2000 character limit reached
On some values which do not belong to the image of Ramanujan's tau-function (2405.16723v1)
Published 26 May 2024 in math.NT
Abstract: Lehmer conjectured that Ramanujan's tau function never vanishes. As a variation of this conjecture, it is proved that \begin{equation*} \tau(n)\neq \pm \ell, \pm 2\ell, \pm 2\ell2, \end{equation*} where $\ell<100$ is an odd prime, by Balakrishnan, Ono, Craig, Tsai and many people. We have proved that \begin{equation*} \tau(n)\neq \pm \ell, \pm 2\ell, \pm 4\ell, \pm 8\ell \end{equation*} for any $n\geq 1$ except 14 cases, where $\ell<1000$ is an odd prime.
- Variations of Lehmer’s conjecture for Ramanujan’s tau-function. J. Number Theory, 237:3–14, 2022.
- Variants of Lehmer’s speculation for newforms. Adv. Math., 428:Paper No. 109141, 31, 2023.
- Even values of Ramanujan’s tau-function. Matematica, 1(2):395–403, 2022.
- A family of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci., 47(1):29–98, 2011.
- Odd values of the Ramanujan tau function. Math. Ann., 382(1-2):203–238, 2022.
- Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math., 539:75–122, 2001.
- Pierre Deligne. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., (43):273–307, 1974.
- Hyperelliptic curves and newform coefficients. J. Number Theory, 225:214–239, 2021.
- Almost all primes satisfy the Atkin-Serre conjecture and are not extremal. Res. Number Theory, 7(2):Paper No. 31, 5, 2021.
- Fourier coefficients of level 1 Hecke eigenforms. Acta Arith., 200(4):371–388, 2021.
- A family of Calabi-Yau varieties and potential automorphy. Ann. of Math. (2), 171(2):779–813, 2010.
- Some remarks on small values of τ(n)𝜏𝑛\tau(n)italic_τ ( italic_n ). Arch. Math. (Basel), 117(6):635–645, 2021.
- Frobenius distributions in GL2subscriptGL2{\rm GL}_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-extensions, volume Vol. 504 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1976. Distribution of Frobenius automorphisms in GL2subscriptGL2{\rm GL}_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-extensions of the rational numbers.
- D. H. Lehmer. The vanishing of Ramanujan’s function τ(n)𝜏𝑛\tau(n)italic_τ ( italic_n ). Duke Math. J., 14:429–433, 1947.
- On values of Ramanujan’s tau function involving two prime factors. Ramanujan J., 63(1):131–155, 2024.
- Odd prime values of the Ramanujan tau function. Ramanujan J., 32(2):269–280, 2013.
- L.J. Mordell. On mr. ramanujan’s empirical expansions of modular functions. Proc. Camb. Philos. Soc., (19):117–124, 1917.
- Odd values of the Ramanujan τ𝜏\tauitalic_τ-function. Bull. Soc. Math. France, 115(3):391–395, 1987.
- Symmetric power functoriality for holomorphic modular forms, I, II. Publ. Math. Inst. Hautes Études Sci., 134:1–152, 2021.
- Jean-Pierre Serre. Divisibilité de certaines fonctions arithmétiques. Enseign. Math. (2), 22(3-4):227–260, 1976.
- Jesse Thorner. Effective forms of the Sato-Tate conjecture. Res. Math. Sci., 8(1):Paper No. 4, 21, 2021.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.