Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep Koopman Learning using Noisy Data (2405.16649v5)

Published 26 May 2024 in eess.SY and cs.SY

Abstract: This paper proposes a data-driven framework to learn a finite-dimensional approximation of a Koopman operator for approximating the state evolution of a dynamical system under noisy observations. To this end, our proposed solution has two main advantages. First, the proposed method only requires the measurement noise to be bounded. Second, the proposed method modifies the existing deep Koopman operator formulations by characterizing the effect of the measurement noise on the Koopman operator learning and then mitigating it by updating the tunable parameter of the observable functions of the Koopman operator, making it easy to implement. The performance of the proposed method is demonstrated on several standard benchmarks. We then compare the presented method with similar methods proposed in the latest literature on Koopman learning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.