Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On Sequential Maximum a Posteriori Inference for Continual Learning (2405.16498v4)

Published 26 May 2024 in cs.LG

Abstract: We formulate sequential maximum a posteriori inference as a recursion of loss functions and reduce the problem of continual learning to approximating the previous loss function. We then propose two coreset-free methods: autodiff quadratic consolidation, which uses an accurate and full quadratic approximation, and neural consolidation, which uses a neural network approximation. These methods are not scalable with respect to the neural network size, and we study them for classification tasks in combination with a fixed pre-trained feature extractor. We also introduce simple but challenging classical task sequences based on Iris and Wine datasets. We find that neural consolidation performs well in the classical task sequences, where the input dimension is small, while autodiff quadratic consolidation performs consistently well in image task sequences with a fixed pre-trained feature extractor, achieving comparable performance to joint maximum a posteriori training in many cases.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.