Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Understanding of linear operators through Wigner analysis (2405.16448v2)

Published 26 May 2024 in math.AP

Abstract: In this work, we extend Wigner's original framework to analyze linear operators by examining the relationship between their Wigner and Schwartz kernels. Our approach includes the introduction of (quasi-)algebras of Fourier integral operators (FIOs), which encompass FIOs of type I and II. The symbols of these operators reside in (weighted) modulation spaces, particularly in Sj\"ostrand's class, known for its favorable properties in time-frequency analysis. One of the significant results of our study is demonstrating the inverse-closedness of these symbol classes. Our analysis includes fundamental examples such as pseudodifferential operators and Fourier integral operators related to Schr{\"o}dinger-type equations. These examples typically feature classical Hamiltonian flows governed by linear symplectic transformations $S \in Sp(d, \mathbb{R})$. The core idea of our approach is to utilize the Wigner kernel to transform a Fourier integral operator $ T $ on $ \mathbb{R}d $ into a pseudodifferential operator $ K$ on $ \mathbb{R}{2d}$. This transformation involves a symbol $\sigma$ well-localized around the manifold defined by $ z = S w $.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.