Localization of $q$-form field on squared curvature gravity domain wall brane coupling with gravity and background scalar (2405.16324v1)
Abstract: In this paper, we investigate a $q$-form field, represented as $\displaystyle X_{M_1M_2...M_q}$, where $\displaystyle q$ indicates the number of indices, with special cases $\displaystyle q = 0, 1, 2$ corresponding to the scalar fields, vector fields, and Kalb-Ramond fields, respectively. Unlike the duality observed between scalar and vector fields in four-dimensional spacetime, $q$-form fields in higher dimensions correspond to a wider array of particles. We propose a novel localized Kaluza-Klein decomposition approach for the $q$-form field in a five-dimensional spacetime, considering its coupling with gravity and background scalar fields. This methodology enables the successful localization of the $q$-form field on a domain wall brane, leading to the derivation of zero modes, Schr\"{o}dinger-like equations, and a four-dimensional effective action. Additionally, in order to stand for the coupling of the $q$-form field with gravity and scalar fields of the background spacetime, we propose a new coupling function $F(R,\varphi)$. Our analysis highlights the significance of the parameters $\displaystyle C_2$ and $\displaystyle t$ in the localization process.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.