Papers
Topics
Authors
Recent
2000 character limit reached

Extended spin relaxation times of optically addressed telecom defects in silicon carbide (2405.16303v1)

Published 25 May 2024 in quant-ph and cond-mat.mtrl-sci

Abstract: Optically interfaced solid-state defects are promising candidates for quantum communication technologies. The ideal defect system would feature bright telecom emission, long-lived spin states, and a scalable material platform, simultaneously. Here, we employ one such system, vanadium (V4+) in silicon carbide (SiC), to establish a potential telecom spin-photon interface within a mature semiconductor host. This demonstration of efficient optical spin polarization and readout facilitates all optical measurements of temperature-dependent spin relaxation times (T1). With this technique, we lower the temperature from about 2K to 100 mK to observe a remarkable four-orders-of-magnitude increase in spin T1 from all measured sites, with site-specific values ranging from 57 ms to above 27 s. Furthermore, we identify the underlying relaxation mechanisms, which involve a two-phonon Orbach process, indicating the opportunity for strain-tuning to enable qubit operation at higher temperatures. These results position V4+ in SiC as a prime candidate for scalable quantum nodes in future quantum networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. M. Kunzer, H. Müller, and U. Kaufmann, Physical Review B 48, 10846 (1993).
  2. B. Kaufmann, A. Dörnen, and F. Ham, Physical Review B 55, 13009 (1997).
  3. J. Baur, M. Kunzer, and J. Schneider, physica status solidi (a) 162, 153 (1997).
  4. B. Tissot and G. Burkard, Physical Review B 103, 064106 (2021a).
  5. A. Csore and A. Gali, Physical Review B 102, 241201 (2020).
  6. B. Tissot and G. Burkard, Physical Review B 104, 064102 (2021b).
  7. K. Shrivastava, physica status solidi (b) 117, 437 (1983).
  8. A. Abragam and B. Bleaney, Electron paramagnetic resonance of transition ions (Clarendon P., 1970).
  9. R. Orbach, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 264, 458 (1961).
  10. J. A. Gross, Physical Review Letters 127, 010504 (2021).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.