Papers
Topics
Authors
Recent
2000 character limit reached

Front-propagation Algorithm: Explainable AI Technique for Extracting Linear Function Approximations from Neural Networks (2405.16259v1)

Published 25 May 2024 in cs.AI and cs.LG

Abstract: This paper introduces the front-propagation algorithm, a novel eXplainable AI (XAI) technique designed to elucidate the decision-making logic of deep neural networks. Unlike other popular explainability algorithms such as Integrated Gradients or Shapley Values, the proposed algorithm is able to extract an accurate and consistent linear function explanation of the network in a single forward pass of the trained model. This nuance sets apart the time complexity of the front-propagation as it could be running real-time and in parallel with deployed models. We packaged this algorithm in a software called $\texttt{front-prop}$ and we demonstrate its efficacy in providing accurate linear functions with three different neural network architectures trained on publicly available benchmark datasets.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.