Papers
Topics
Authors
Recent
Search
2000 character limit reached

Transfer learning in predicting quantum many-body dynamics: from physical observables to entanglement entropy

Published 25 May 2024 in quant-ph | (2405.16254v1)

Abstract: Deep neural networks have demonstrated remarkable efficacy in extracting meaningful representations from complex datasets. This has propelled representation learning as a compelling area of research across diverse fields. One interesting open question is how beneficial representation learning can be for quantum many-body physics, with its notouriosly high-dimensional state space. In this work, we showcase the capacity of a neural network that was trained on a subset of physical observables of a many-body system to partially acquire an implicit representation of the wave function. We illustrate this by demonstrating the effectiveness of reusing the representation learned by the neural network to enhance the learning process of another quantity derived from the quantum state. In particular, we focus on how the pre-trained neural network can enhance the learning of entanglement entropy. This is of particular interest as directly measuring the entanglement in a many-body system is very challenging, while a subset of physical observables can be easily measured in experiments. We show the pre-trained neural network learns the dynamics of entropy with fewer resources and higher precision in comparison with direct training on the entanglement entropy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Yoshua Bengio, Aaron Courville,  and Pascal Vincent, “Representation learning: A review and new perspectives,” IEEE transactions on pattern analysis and machine intelligence 35, 1798–1828 (2013).
  2. Jacob Devlin, Ming-Wei Chang, Kenton Lee,  and Kristina Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805  (2018).
  3. Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz,  and Samy Bengio, “Generating sentences from a continuous space,” arXiv preprint arXiv:1511.06349  (2015).
  4. Tero Karras, Timo Aila, Samuli Laine,  and Jaakko Lehtinen, “Progressive growing of gans for improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196  (2017).
  5. Alex Krizhevsky, Ilya Sutskever,  and Geoffrey E Hinton, “Imagenet classification with deep convolutional neural networks,” Communications of the ACM 60, 84–90 (2017).
  6. Andrea Rocchetto, Edward Grant, Sergii Strelchuk, Giuseppe Carleo,  and Simone Severini, “Learning hard quantum distributions with variational autoencoders,” npj Quantum Information 4, 28 (2018).
  7. Yize Sun, Zixin Wu, Yunpu Ma,  and Volker Tresp, “Quantum architecture search with unsupervised representation learning,” arXiv preprint arXiv:2401.11576  (2024).
  8. Tobias Schmale, Moritz Reh,  and Martin Gärttner, “Efficient quantum state tomography with convolutional neural networks,” npj Quantum Information 8, 115 (2022).
  9. Alain Aspect, “Bell’s inequality test: more ideal than ever,” Nature 398, 189–190 (1999).
  10. Luigi Amico, Rosario Fazio, Andreas Osterloh,  and Vlatko Vedral, “Entanglement in many-body systems,” Rev. Mod. Phys. 80, 517–576 (2008).
  11. Sheng-Kai Liao, Wen-Qi Cai, Wei-Yue Liu, Liang Zhang, Yang Li, Ji-Gang Ren, Juan Yin, Qi Shen, Yuan Cao, Zheng-Ping Li, et al., “Satellite-to-ground quantum key distribution,” Nature 549, 43–47 (2017).
  12. Naeimeh Mohseni, Shahpoor Saeidian, Jonathan P. Dowling,  and Carlos Navarrete-Benlloch, “Deterministic generation of hybrid high-n𝑛nitalic_n noon states with rydberg atoms trapped in microwave cavities,” Phys. Rev. A 101, 013804 (2020).
  13. Jian-Wei Pan, Zeng-Bing Chen, Chao-Yang Lu, Harald Weinfurter, Anton Zeilinger,  and Marek Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
  14. Asher Peres, “Separability criterion for density matrices,” Physical Review Letters 77, 1413 (1996).
  15. Patrick Emonts and Ivan Kukuljan, “Reduced density matrix and entanglement of interacting quantum field theories with hamiltonian truncation,” Physical Review Research 4, 033039 (2022).
  16. Jun Gao, Lu-Feng Qiao, Zhi-Qiang Jiao, Yue-Chi Ma, Cheng-Qiu Hu, Ruo-Jing Ren, Ai-Lin Yang, Hao Tang, Man-Hong Yung,  and Xian-Min Jin, “Experimental machine learning of quantum states,” Physical review letters 120, 240501 (2018).
  17. Peng-Hui Qiu, Xiao-Guang Chen,  and Yi-Wei Shi, “Detecting entanglement with deep quantum neural networks,” IEEE Access 7, 94310–94320 (2019).
  18. Yue-Chi Ma and Man-Hong Yung, “Transforming bell’s inequalities into state classifiers with machine learning,” npj Quantum Information 4, 34 (2018).
  19. Cillian Harney, Stefano Pirandola, Alessandro Ferraro,  and Mauro Paternostro, “Entanglement classification via neural network quantum states,” New Journal of Physics 22, 045001 (2020).
  20. Naema Asif, Uman Khalid, Awais Khan, Trung Q Duong,  and Hyundong Shin, “Entanglement detection with artificial neural networks,” Scientific Reports 13, 1562 (2023).
  21. Qiang Yang, “An introduction to transfer learning,” in Advanced Data Mining and Applications: 4th International Conference, ADMA 2008, Chengdu, China, October 8-10, 2008. Proceedings 4 (Springer, 2008) pp. 1–1.
  22. Rich Caruana, Multitask learning (Springer, 1998).
  23. Naeimeh Mohseni, Thomas Fösel, Lingzhen Guo, Carlos Navarrete-Benlloch,  and Florian Marquardt, “Deep learning of quantum many-body dynamics via random driving,” Quantum 6, 714 (2022).
  24. Naeimeh Mohseni, Junheng Shi, Tim Byrnes,  and Michael Hartmann, “Deep learning of many-body observables and quantum information scrambling,” arXiv preprint arXiv:2302.04621  (2023a).
  25. Yang Liu, Jingfa Li, Shuyu Sun,  and Bo Yu, “Advances in gaussian random field generation: a review,” Computational Geosciences , 1–37 (2019).
  26. J Robert Johansson, Paul D Nation,  and Franco Nori, “Qutip: An open-source python framework for the dynamics of open quantum systems,” Computer Physics Communications 183, 1760–1772 (2012).
  27. Naeimeh Mohseni, Carlos Navarrete-Benlloch, Tim Byrnes,  and Florian Marquardt, “Deep recurrent networks predicting the gap evolution in adiabatic quantum computing,” Quantum 7, 1039 (2023b).
  28. Pasquale Calabrese, Fabian HL Essler,  and Maurizio Fagotti, “Quantum quench in the transverse-field ising chain,” Physical review letters 106, 227203 (2011).
  29. Marton Kormos, Mario Collura, Gabor Takács,  and Pasquale Calabrese, “Real-time confinement following a quantum quench to a non-integrable model,” Nature Physics 13, 246–249 (2017).
  30. Carlos Navarrete-Benlloch, Rafael Garcés, Naeimeh Mohseni,  and German J de Valcárcel, “Floquet theory for temporal correlations and spectra in time-periodic open quantum systems: Application to squeezed parametric oscillation beyond the rotating-wave approximation,” Physical Review A 103, 023713 (2021).
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.