Papers
Topics
Authors
Recent
2000 character limit reached

Identification of coupled Landau and anomalous resonances in space plasmas (2405.16065v2)

Published 25 May 2024 in physics.space-ph and physics.plasm-ph

Abstract: Wave-particle resonance, a ubiquitous process in the plasma universe, occurs when resonant particles observe a constant wave phase to enable sustained energy transfer. Here, we present spacecraft observations of simultaneous Landau and anomalous resonances between oblique whistler waves and the same group of protons, which are evidenced, respectively, by phase-space rings in parallel-velocity spectra and phase-bunched distributions in gyro-phase spectra. Our results indicate the coupling between Landau and anomalous resonances via the overlapping of the resonance islands.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. D. Nunn and Y. Omura, A computational and theoretical investigation of nonlinear wave-particle interactions in oblique whistlers, Journal of Geophysical Research: Space Physics 120, 2890 (2015).
  2. Y. Omura, Nonlinear wave growth theory of whistler-mode chorus and hiss emissions in the magnetosphere, Earth, Planets and Space 73, 10.1186/s40623-021-01380-w (2021).
  3. M. Hoshino and T. Terasawa, Numerical study of the upstream wave excitation mechanism: 1. nonlinear phase bunching of beam ions, Journal of Geophysical Research: Space Physics 90, 57 (1985).
  4. N. Romanelli, C. Mazelle, and K. Meziane, Nonlinear wave-particle interaction: Implications for newborn planetary and backstreaming proton velocity distribution functions, Journal of Geophysical Research: Space Physics 123, 1100 (2018).
  5. M. Kitahara and Y. Katoh, Anomalous trapping of low pitch angle electrons by coherent whistler mode waves, Journal of Geophysical Research: Space Physics 124, 5568 (2019).
  6. E. Behar, F. Sahraoui, and L. Berčič, Resonant whistler-electron interactions: Mms observations versus test-particle simulation, Journal of Geophysical Research: Space Physics 125, e2020JA028040 (2020).
  7. C. Chen, K. Klein, and G. G. Howes, Evidence for electron landau damping in space plasma turbulence, Nature communications 10, 740 (2019).
  8. M. M. Hoppe and C. T. Russell, Plasma rest frame frequencies and polarizations of the low-frequency upstream waves: Isee 1 and 2 observations, Journal of Geophysical Research 88, 10.1029/JA088iA03p02021 (1983).
  9. L. B. Wilson III, Low frequency waves at and upstream of collisionless shocks, Low-frequency waves in space plasmas , 269 (2016).
  10. See supplemental material at [link] for the parameters, setting the electromagnetic fields and particle distributions in the simulation,  .
  11. O. Santolík, M. Parrot, and F. Lefeuvre, Singular value decomposition methods for wave propagation analysis, Radio Science 38, 10 (2003).
  12. M. Hoppe and C. Russell, Whistler mode wave packets in the earth’s foreshock region, Nature 287, 417 (1980).
  13. Y. Omura and Q. Zhao, Nonlinear pitch angle scattering of relativistic electrons by emic waves in the inner magnetosphere, Journal of Geophysical Research: Space Physics 117 (2012).
  14. G. R. Smith and A. N. Kaufman, Stochastic acceleration by a single wave in a magnetic field, Phys. Rev. Lett. 34, 1613 (1975).
  15. G. R. Smith and A. N. Kaufman, Stochastic acceleration by an obliquely propagating wave-an example of overlapping resonances, The Physics of Fluids 21, 2230 (1978), https://pubs.aip.org/aip/pfl/article-pdf/21/12/2230/12307495/2230_1_online.pdf .

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.