Papers
Topics
Authors
Recent
2000 character limit reached

Application based Evaluation of an Efficient Spike-Encoder, "Spiketrum" (2405.15927v4)

Published 24 May 2024 in eess.SP, cs.NE, cs.SY, and eess.SY

Abstract: Spike-based encoders represent information as sequences of spikes or pulses, which are transmitted between neurons. A prevailing consensus suggests that spike-based approaches demonstrate exceptional capabilities in capturing the temporal dynamics of neural activity and have the potential to provide energy-efficient solutions for low-power applications. The Spiketrum encoder efficiently compresses input data using spike trains or code sets (for non-spiking applications) and is adaptable to both hardware and software implementations, with lossless signal reconstruction capability. The paper proposes and assesses Spiketrum's hardware, evaluating its output under varying spike rates and its classification performance with popular spiking and non-spiking classifiers, and also assessing the quality of information compression and hardware resource utilization. The paper extensively benchmarks both Spiketrum hardware and its software counterpart against state-of-the-art, biologically-plausible encoders. The evaluations encompass benchmarking criteria, including classification accuracy, training speed, and sparsity when using encoder outputs in pattern recognition and classification with both spiking and non-spiking classifiers. Additionally, they consider encoded output entropy and hardware resource utilization and power consumption of the hardware version of the encoders. Results demonstrate Spiketrum's superiority in most benchmarking criteria, making it a promising choice for various applications. It efficiently utilizes hardware resources with low power consumption, achieving high classification accuracy. This work also emphasizes the potential of encoders in spike-based processing to improve the efficiency and performance of neural computing systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 1 like about this paper.