Demystifying Arrow of Time (2405.15796v1)
Abstract: Scientific discussions of the arrow of time often get quite confusing due to highly complex systems they deal with. Popular literature then often coveys messages that tend to get lost in translation. The purpose of this note is to demystify the arrow of time by stripping off the unnecessary complexities and thereby simplifying the discussion. We do this by providing examples that are exactly solvable and make it easy to see the root cause of the apparent "time-irreversibility". We also discuss "time-reversal" solutions, where the initial state evolves such that it reaches the state which is the same as the initial state moving backward in time. These solutions are simple enough to be comprehensible to a highschooler. We discuss the arrow of time both in the classical and quantum settings, including in the cosmological context.
- A. Ashtekar, A. Corichi and A. Kesavan (2020) Emergence of classical behavior in the early Universe. Phys. Rev. D102(2): 023512.
- J. Berjon, E. Okon and D. Sudarsky (2021) Critical review of prevailing explanations for the emergence of classicality in cosmology. Phys. Rev. D103(4): 043521.
- H.A. Bethe (1947) The Electromagnetic Shift of Energy Levels. Phys. Rev. 72(4): 339-341.
- A.S. Blum and A. Martínez de Velasco (2022) The genesis of the CPT theorem. Eur. Phys. J. H47: 5.
- L. Boltzmann (1868) Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. Wiener Berichte 58: 517-560.
- L. Boltzmann (1871) Einige allgemeine Sätze über Wärmegleichgewicht. Wiener Berichte 63: 679-711.
- L. Boltzmann (1876) Über die Natur der Gasmoleküle. Wiener Berichte 74: 553-560.
- L. Boltzmann (1898) Vorlesungen über Gastheorie. Vol. 2. Leipzig, Germany: J.A. Barth.
- T.S. Bunch and P.C.W. Davies (1978) Quantum field theory in de Sitter space: renormalization by point-splitting. Proc. R. Soc. Lond. A360(1700): 117-134.
- S. Davidson, E. Nardi and Y. Nir (2008) Leptogenesis. Physics Reports 466(4-5): 105-177.
- R.H. Dicke (1957) Gravitation without a principle of equivalence. Reviews of Modern Physics 29(3): 363-376.
- L. Diósi (1984) Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A105(4-5): 199-102.
- F.J. Dyson (1952) Divergence of Perturbation Theory in Quantum Electrodynamics. Phys. Rev. 85(4): 631-632.
- J. Earman and J. Mosterín (1999) A Critical Look at Inflationary Cosmology. Philosophy of Science 66(1): 1-49.
- M.B. Einhorn, D.L. Stein and D. Toussaint (1980) Are grand unified theories compatible with standard cosmology? Phys. Rev. D21(12): 3295-3298.
- K. Eppley and E. Hannah (1977) The necessity of quantizing the gravitational field. Foundations of Physics 7(1): 51-68.
- J.M. Ezquiaga, J. García-Bellido and V. Vennin (2023) Massive Galaxy Clusters Like El Gordo Hint at Primordial Quantum Diffusion. Phys. Rev. Lett. 130(12): 121003.
- J.W. Gibbs (1875-1878) On the Equilibrium of Heterogeneous Substances. Connecticut Acad. Sci.
- A. Großardt (2022) Three little paradoxes: Making sense of semiclassical gravity. AVS Quantum Sci. 4(1): 010502.
- A.H. Guth (1981) Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D23(2): 347-356.
- A.H. Guth and S-H.H. Tye (1980) Phase transitions and magnetic monopole production in the very early universe. Phys. Rev. Lett. 44(10): 631–635; Err. ibid. 44(14): 963.
- B. Hawkins (1982) Indirect Evidence for Quantum Gravity? Phys. Rev. Lett. 48(7): 520.
- A. Ijjas, P.J. Steinhardt and A. Loeb (2014) Inflationary schism. Phys. Lett. B736: 142-146.
- L.D. Landau, A.A. Abrikosov and I.M. Khalatnikov (1954) An asymptotic expression for the photon Green function in quantum electrodynamics. Dokl. Akad. Nauk SSSR 95(6): 1177-1180 (in Russian).
- L.D. Landau and E.M. Lifshitz (1980) Course of Theoretical Physics. Vol. 5: Statistical Physics. Oxford, UK: Pergamon Press (3rd ed).
- J.-C. Lehners (2009) Ekpyrotic and cyclic cosmology. Phys. Rep. 465(6): 223-263.
- J. Martin and V. Vennin (2016) Quantum discord of cosmic inflation: Can we show that CMB anisotropies are of quantum-mechanical origin? Phys. Rev. D93(2): 023505.
- J. Mattingly (2006) Why Eppley and Hannah’s thought experiment fails. Phys. Rev. D73(6): 064025.
- T. Ohlsson (2023) Proton decay. Nuclear Physics B993: 116268.
- J. Oppenheim (2023) A Postquantum Theory of Classical Gravity? Phys. Rev. X13(4): 041040.
- D.N. Page and C.D. Geilker (1981) Indirect Evidence for Quantum Gravity. Phys. Rev. Lett. 47(14): 979-982.
- R. Penrose (1989) Difficulties with Inflationary Cosmology. Annals of the New York Academy of Sciences 571(1): 249-264.
- R. Penrose (1996) On gravity’s role in state reduction. Gen. Relativ. Gravit. 28(5): 581-600.
- A.M. Polyakov (1974) Particle spectrum in quantum field theory. JETP Letters 20: 194-195. (ZhETF Pis. Red. 20(6): 430-433.)
- N. Poplawski (2012) Nonsingular, big-bounce cosmology from spinor-torsion coupling. Phys. Rev. D85(10): 107502.
- O. Sackur (1913) Die universelle Bedeutung des sog. elementaren Wirkungsquantums. Annalen der Physik 40: 67-86.
- J. Schwichtenberg (2019) Gauge coupling unification without supersymmetry. Eur. Phys. J. C79: 351.
- J. Schwinger (1948) On Quantum-Electrodynamics and the Magnetic Moment of the Electron. Phys. Rev. 73(4): 416-417.
- A. Sobol, P. Güntert and R. Riek (2021) On the Entropy of a One-Dimensional Gas with and without Mixing Using Sinai Billiard. Entropy 23(9): 1188.
- H. Tetrode (1912) Die chemische Konstante der Gase und das elementare Wirkungsquantum. Annalen der Physik 38: 434-442; Err. ibid. 39: 255.
- G. ’t Hooft (1974) Magnetic monopoles in unified gauge theories. Nuclear Physics B79(2): 276-284.
- J.A. Vaccaro (2016) Quantum asymmetry between time and space. Proc. R. Soc. A472(2185): 20150670.
- J. von Neumann (1929) Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik. Zeitschrift für Physik 57: 30-70.
- J.J. Waterston (1846) On the physics of media that are composed of free and elastic molecules in a state of motion. Proc. R. Soc. Lond. 5: 604.
- J.J. Waterston (1892) On the physics of media that are composed of free and perfectly elastic molecules in a state of motion. Philosophical Transactions of the Royal Society of London 183: 1-79.
- S. Weinberg (1987) Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59(22): 2607-2610.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.