Quantum nondemolition measurement operator with spontaneous emission (2405.15704v1)
Abstract: We present a theory for quantum nondemolition (QND) measurements of an atomic ensemble in the presence of spontaneous emission. We derive the master equation that governs the evolution of the ground state of the atoms and the quantum state of light. Solving the master equation exactly without invoking the Holstein-Primakoff approximation and projecting out the quantum state of light, we derive a positive operator-valued measure that describes the QND measurement. We show that at high spontaneous emission conditions, the QND measurement has a unique dominant state to which the measurement collapses. We additionally investigate the behavior of the QND measurement in the limiting case of strong atom-light interactions, where we show that the positive operator valued measure becomes a projection operator. We further analyze the effect of spontaneous emission noise on atomic state preparation. We find that it limits the width of the eigenvalue spectrum available to a quantum state in a linear superposition. This effect leads to state collapse on the dominant state. We generate various non-classical states of the atom by tuning the atom-light interaction strength. We find that non-classical states such as the Schr\"odinger-cat state, whose coherence spans the entire eigenvalue spectrum of the total spin operator $J_z$ for a given spin eigenvalue $J$, lose their coherence because spontaneous emission limits the accessibility of states farther away from the dominant state.
- V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Science 209, 547 (1980).
- P. Grangier, J. A. Levenson, and J. Poizat, Nature 396, 537 (1998).
- R. Blatt and D. Wineland, Nature 453, 1008 (2008).
- M. H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013).
- C. Guerlin and J. Bernu and S. Deléglise and C. Sayrin and S. Gleyzes and S. Kuhr and M. Brune and J. -M. Raimond and S. Haroche, Nature 448, 889 (2007).
- R. Loudon, The Quantum Theory of Light (Oxford University Press, New York, 2000).
- M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997).
- D. F. Walls and G. J. Milburn, Quantum Optics, 2nd ed. (Springer-Verlag, Berlin, 2008).
- T. Byrnes and E. O. Ilo-Okeke, Quantum Atom Optics: Theory and Applications to Technology (Cambridge University Press, Cambridge, 2021).
- M. J. Holland, D. F. Walls, and P. Zoller, Phys. Rev. Lett. 67, 1716 (1991).
- A. Kuzmich, L. Mandel, and N. P. Bigelow, Phys. Rev. Lett. 85, 1594 (2000).
- M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, Phys. Rev. Lett. 104, 073604 (2010).
- A. Cabello, Journal of Modern Optics 50, 1049 (2003).
- M. Q. Lone and T. Byrnes, Phys. Rev. A 92, 011401(R) (2015).
- L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms ((John Wiley, New York, 1975)).
- B. W. Shore, The theory of coherent atomic excitation , Vol. 1 (Wiley-Interscience, New York, 1990).
- H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer-Verlag, Berlin, 1999).
- E. O. Ilo-Okeke and T. Byrnes, Phys. Rev. Lett. 112, 233602 (2014).
- J. L. Sørensen, J. Hald, and E. S. Polzik, Phys. Rev. Lett. 80, 3487 (1998).
- M. Ban, Phys. Rev. A 80, 064103 (2009).
- D. G. Tempel and A. Aspuru-Guzik, Chemical Physics 391, 130 (2011).
- H. -P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002).
- H. J. Carmichael, Statistical Methods in Quantum Optics 2 (Springer-Verlag, Berlin, 2008).
- W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, eight ed. (John Wiley &\&& Sons, New Jersey, 2005).
- M. L. Boas, Mathematical Methods In The Physical Sciences, 3rd ed. (John Wiley &\&& Sons, New Jersey, 2006).
- E. O. Ilo-Okeke and A. A. Zozulya, Phys. Rev. A 82, 053603 (2010).
- E. O. Ilo-Okeke and T. Byrnes, Phys. Rev. A 94, 013617 (2016).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.