Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Synthetic high angular momentum spin dynamics in a microwave oscillator (2405.15695v4)

Published 24 May 2024 in quant-ph

Abstract: Spins and oscillators are foundational to much of physics and applied sciences. For quantum information, a spin 1/2 exemplifies the most basic unit, a qubit. High angular momentum spins (HAMSs) and harmonic oscillators provide multi-level manifolds (e.g., qudits) which have the potential for hardware-efficient protected encodings of quantum information and simulation of many-body quantum systems. In this work, we demonstrate a new quantum control protocol that conceptually merges these disparate hardware platforms. Namely, we show how to modify a harmonic oscillator on-demand to implement a continuous range of generators associated to resonant driving of a harmonic qudit, which we can interpret as accomplishing linear and nonlinear control over a harmonic HAMS degree of freedom. The spin-like dynamics are verified by demonstration of linear spin coherent (SU(2)) rotations, nonlinear spin control, and comparison to other manifolds like simply-truncated oscillators. Our scheme allows the first universal control of such a harmonic qudit encoding: we use linear operations to accomplish four logical gates, and further show that nonlinear harmonicity-preserving operations complete the logical gate set. Our results show how motion on a closed Hilbert space can be useful for quantum information processing and opens the door to superconducting circuit simulations of higher angular momentum quantum magnetism.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. Ma, W.-L. et al. Quantum control of bosonic modes with superconducting circuits. Science Bulletin 66, 1789–1805 (2021). URL https://www.sciencedirect.com/science/article/pii/S2095927321004011.
  2. Hardware-efficient error-correcting codes for large nuclear spins (2021). URL http://arxiv.org/abs/2103.08548.
  3. Albert, V. V. Bosonic coding: introduction and use cases (2022). URL http://arxiv.org/abs/2211.05714. ArXiv:2211.05714 [quant-ph].
  4. Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019). URL https://www.nature.com/articles/s41586-019-0960-6.
  5. Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020). URL https://www.nature.com/articles/s41586-020-2603-3.
  6. Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023). URL https://www.nature.com/articles/s41586-023-05782-6.
  7. Ni, Z. et al. Beating the break-even point with a discrete-variable-encoded logical qubit. Nature 616, 56–60 (2023). URL https://www.nature.com/articles/s41586-023-05784-4.
  8. Error correction of a logical grid state qubit by dissipative pumping. Nature Physics 18, 296–300 (2022). URL https://www.nature.com/articles/s41567-021-01487-7.
  9. Programmable quantum simulations of bosonic systems with trapped ions. Phys. Rev. Lett. 131, 033604 (2023). URL https://link.aps.org/doi/10.1103/PhysRevLett.131.033604.
  10. Leghtas, Z. et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347, 853–857 (2015). URL https://science.sciencemag.org/content/347/6224/853.
  11. Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 (2020). URL https://www.nature.com/articles/s41586-020-2587-z.
  12. Gertler, J. M. et al. Protecting a bosonic qubit with autonomous quantum error correction. Nature 590, 243–248 (2021). URL https://www.nature.com/articles/s41586-021-03257-0.
  13. Ma, Y. et al. Error-transparent operations on a logical qubit protected by quantum error correction. Nature Physics 16, 827–831 (2020). URL https://www.nature.com/articles/s41567-020-0893-x.
  14. Krastanov, S. et al. Universal control of an oscillator with dispersive coupling to a qubit. Physical Review A 92, 040303 (2015). URL https://link.aps.org/doi/10.1103/PhysRevA.92.040303.
  15. Heeres, R. W. et al. Cavity State Manipulation Using Photon-Number Selective Phase Gates. Physical Review Letters 115, 137002 (2015). URL https://link.aps.org/doi/10.1103/PhysRevLett.115.137002.
  16. Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nature Communications 8, 94 (2017). URL https://www.nature.com/articles/s41467-017-00045-1.
  17. Mirrahimi, M. et al. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New Journal of Physics 16, 045014 (2014). URL https://dx.doi.org/10.1088/1367-2630/16/4/045014.
  18. Encoding a qubit in an oscillator. Physical Review A 64, 012310 (2001). URL https://link.aps.org/doi/10.1103/PhysRevA.64.012310.
  19. Unsuitability of cubic phase gates for non-Clifford operations on Gottesman-Kitaev-Preskill states. Physical Review A 103, 032409 (2021). URL https://link.aps.org/doi/10.1103/PhysRevA.103.032409.
  20. Rojkov, I. et al. Two-qubit operations for finite-energy gottesman-kitaev-preskill encodings (2023). eprint arXiv:2305.05262.
  21. Michael, M. H. et al. New Class of Quantum Error-Correcting Codes for a Bosonic Mode. Physical Review X 6, 031006 (2016). URL https://link.aps.org/doi/10.1103/PhysRevX.6.031006.
  22. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009). URL https://www.nature.com/articles/nature08005.
  23. Eickbusch, A. et al. Fast universal control of an oscillator with weak dispersive coupling to a qubit. Nature Physics 18, 1464–1469 (2022). URL https://www.nature.com/articles/s41567-022-01776-9.
  24. Reinhold, P. et al. Error-corrected gates on an encoded qubit. Nature Physics 16, 822–826 (2020). URL https://www.nature.com/articles/s41567-020-0931-8.
  25. Radcliffe, J. M. Some properties of coherent spin states. Journal of Physics A: General Physics 4, 313 (1971). URL https://dx.doi.org/10.1088/0305-4470/4/3/009.
  26. Robust macroscopic Schrodinger’s cat on a nucleus. Physical Review Research 6, 013101 (2024). URL https://link.aps.org/doi/10.1103/PhysRevResearch.6.013101.
  27. Quantum dynamics of an electromagnetic mode that cannot contain N photons. Science 348, 776–779 (2015). URL https://www.science.org/doi/10.1126/science.1259345.
  28. Signoles, A. et al. Confined quantum Zeno dynamics of a watched atomic arrow. Nature Physics 10, 715–719 (2014). URL https://www.nature.com/articles/nphys3076.
  29. de Fuentes, I. F. et al. Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields (2023). URL http://arxiv.org/abs/2306.07453. ArXiv:2306.07453 [cond-mat, physics:quant-ph].
  30. Neeley, M. et al. Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722–725 (2009). URL https://www.science.org/doi/abs/10.1126/science.1173440.
  31. Nguyen, L. B. et al. Empowering high-dimensional quantum computing by traversing the dual bosonic ladder (2023). URL https://arxiv.org/abs/2312.17741. eprint arXiv:2312.17741.
  32. Bertet, P. et al. Direct Measurement of the Wigner Function of a One-Photon Fock State in a Cavity. Physical Review Letters 89, 200402 (2002). URL https://link.aps.org/doi/10.1103/PhysRevLett.89.200402.
  33. Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving. npj Quantum Information 3, 1–7 (2017). URL https://www.nature.com/articles/s41534-017-0019-1.
  34. Touzard, S. et al. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation. Physical Review X 8, 021005 (2018). URL https://link.aps.org/doi/10.1103/PhysRevX.8.021005.
  35. Zhang, Y. et al. Engineering bilinear mode coupling in circuit QED: Theory and experiment. Physical Review A 99, 012314 (2019). URL https://link.aps.org/doi/10.1103/PhysRevA.99.012314.
  36. Efficient cavity control with SNAP gates (2020). URL http://arxiv.org/abs/2004.14256. ArXiv:2004.14256 [quant-ph].
  37. Kudra, M. et al. Robust Preparation of Wigner-Negative States with Optimized SNAP-Displacement Sequences. PRX Quantum 3, 030301 (2022). URL https://link.aps.org/doi/10.1103/PRXQuantum.3.030301.
  38. Conditional-not Displacement: Fast Multioscillator Control with a Single Qubit. Physical Review X 14, 011055 (2024). URL https://link.aps.org/doi/10.1103/PhysRevX.14.011055.
  39. Fast quantum control of cavities using an improved protocol without coherent errors (2023). eprint 2310.10498.
  40. Ganjam, S. et al. Surpassing millisecond coherence times in on-chip superconducting quantum memories by optimizing materials, processes, and circuit design (2023). URL http://arxiv.org/abs/2308.15539.
  41. Drive-induced nonlinearities of cavity modes coupled to a transmon ancilla. Physical Review A 105, 022423 (2022). URL https://link.aps.org/doi/10.1103/PhysRevA.105.022423.
  42. Gross, J. A. Designing Codes around Interactions: The Case of a Spin. Physical Review Letters 127, 010504 (2021). URL https://link.aps.org/doi/10.1103/PhysRevLett.127.010504.
  43. Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer-Verlag, 1994).
  44. Quantum spin liquids: a review. Reports on Progress in Physics 80, 016502 (2016). URL https://dx.doi.org/10.1088/0034-4885/80/1/016502.
  45. Quantum spin liquid states. Reviews of Modern Physics 89, 025003 (2017). URL https://link.aps.org/doi/10.1103/RevModPhys.89.025003.
  46. Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020). URL https://www.science.org/doi/10.1126/science.aay0668.
  47. Taie, S. et al. Observation of antiferromagnetic correlations in an ultracold SU(N) Hubbard model. Nature Physics 18, 1356–1361 (2022). URL https://www.nature.com/articles/s41567-022-01725-6.
  48. Rosenberg, E. et al. Dynamics of magnetization at infinite temperature in a Heisenberg spin chain. Science 384, 48–53 (2024). URL https://www.science.org/doi/10.1126/science.adi7877.
  49. Multi-frequency control and measurement of a spin-7/2 system encoded in a transmon qudit (In preparation).
  50. Yu, X. et al. Creation and manipulation of schrödinger cat states of a single nuclear spin qudit in silicon (In preparation).
  51. Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Physical Review B 94, 014506 (2016). URL https://link.aps.org/doi/10.1103/PhysRevB.94.014506.
  52. Heeres, R. W. et al. Cavity state manipulation using photon-number selective phase gates. Phys. Rev. Lett. 115, 137002 (2015). URL https://link.aps.org/doi/10.1103/PhysRevLett.115.137002.
  53. QuTiP 2: A Python framework for the dynamics of open quantum systems. Computer Physics Communications 184, 1234–1240 (2013). URL http://www.sciencedirect.com/science/article/pii/S0010465512003955.
  54. Circuit quantum electrodynamics. Reviews of Modern Physics 93, 025005 (2021). URL https://link.aps.org/doi/10.1103/RevModPhys.93.025005.
  55. Experimental realization of any discrete unitary operator. Physical Review Letters 73, 58–61 (1994). URL https://link.aps.org/doi/10.1103/PhysRevLett.73.58.
  56. Dolan, G. J. Offset masks for lift‐off photoprocessing. Applied Physics Letters 31, 337–339 (1977). URL https://doi.org/10.1063/1.89690.
  57. Wigner, E. Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Vieweg+Teubner Verlag, Wiesbaden, 1931). URL http://link.springer.com/10.1007/978-3-663-02555-9.
  58. Chou, K. S. Teleported operations between logical qubits in circuit quantum electrodynamics. Ph.D. thesis, Yale University (2018).
  59. Stratonovich, R. L. On Distributions in Representation Space. Journal of Experimental and Theoretical Physics 4, 891 (1957). URL http://jetp.ras.ru/cgi-bin/e/index/e/4/6/p891?a=list.
  60. Agarwal, G. S. Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions. Physical Review A 24, 2889–2896 (1981). URL https://link.aps.org/doi/10.1103/PhysRevA.24.2889.
  61. Continuous phase-space representations for finite-dimensional quantum states and their tomography. Physical Review A 101, 022318 (2020). URL https://link.aps.org/doi/10.1103/PhysRevA.101.022318.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 68 likes.

Upgrade to Pro to view all of the tweets about this paper: