Synthetic high angular momentum spin dynamics in a microwave oscillator (2405.15695v4)
Abstract: Spins and oscillators are foundational to much of physics and applied sciences. For quantum information, a spin 1/2 exemplifies the most basic unit, a qubit. High angular momentum spins (HAMSs) and harmonic oscillators provide multi-level manifolds (e.g., qudits) which have the potential for hardware-efficient protected encodings of quantum information and simulation of many-body quantum systems. In this work, we demonstrate a new quantum control protocol that conceptually merges these disparate hardware platforms. Namely, we show how to modify a harmonic oscillator on-demand to implement a continuous range of generators associated to resonant driving of a harmonic qudit, which we can interpret as accomplishing linear and nonlinear control over a harmonic HAMS degree of freedom. The spin-like dynamics are verified by demonstration of linear spin coherent (SU(2)) rotations, nonlinear spin control, and comparison to other manifolds like simply-truncated oscillators. Our scheme allows the first universal control of such a harmonic qudit encoding: we use linear operations to accomplish four logical gates, and further show that nonlinear harmonicity-preserving operations complete the logical gate set. Our results show how motion on a closed Hilbert space can be useful for quantum information processing and opens the door to superconducting circuit simulations of higher angular momentum quantum magnetism.
- Ma, W.-L. et al. Quantum control of bosonic modes with superconducting circuits. Science Bulletin 66, 1789–1805 (2021). URL https://www.sciencedirect.com/science/article/pii/S2095927321004011.
- Hardware-efficient error-correcting codes for large nuclear spins (2021). URL http://arxiv.org/abs/2103.08548.
- Albert, V. V. Bosonic coding: introduction and use cases (2022). URL http://arxiv.org/abs/2211.05714. ArXiv:2211.05714 [quant-ph].
- Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019). URL https://www.nature.com/articles/s41586-019-0960-6.
- Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020). URL https://www.nature.com/articles/s41586-020-2603-3.
- Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023). URL https://www.nature.com/articles/s41586-023-05782-6.
- Ni, Z. et al. Beating the break-even point with a discrete-variable-encoded logical qubit. Nature 616, 56–60 (2023). URL https://www.nature.com/articles/s41586-023-05784-4.
- Error correction of a logical grid state qubit by dissipative pumping. Nature Physics 18, 296–300 (2022). URL https://www.nature.com/articles/s41567-021-01487-7.
- Programmable quantum simulations of bosonic systems with trapped ions. Phys. Rev. Lett. 131, 033604 (2023). URL https://link.aps.org/doi/10.1103/PhysRevLett.131.033604.
- Leghtas, Z. et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347, 853–857 (2015). URL https://science.sciencemag.org/content/347/6224/853.
- Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 (2020). URL https://www.nature.com/articles/s41586-020-2587-z.
- Gertler, J. M. et al. Protecting a bosonic qubit with autonomous quantum error correction. Nature 590, 243–248 (2021). URL https://www.nature.com/articles/s41586-021-03257-0.
- Ma, Y. et al. Error-transparent operations on a logical qubit protected by quantum error correction. Nature Physics 16, 827–831 (2020). URL https://www.nature.com/articles/s41567-020-0893-x.
- Krastanov, S. et al. Universal control of an oscillator with dispersive coupling to a qubit. Physical Review A 92, 040303 (2015). URL https://link.aps.org/doi/10.1103/PhysRevA.92.040303.
- Heeres, R. W. et al. Cavity State Manipulation Using Photon-Number Selective Phase Gates. Physical Review Letters 115, 137002 (2015). URL https://link.aps.org/doi/10.1103/PhysRevLett.115.137002.
- Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nature Communications 8, 94 (2017). URL https://www.nature.com/articles/s41467-017-00045-1.
- Mirrahimi, M. et al. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New Journal of Physics 16, 045014 (2014). URL https://dx.doi.org/10.1088/1367-2630/16/4/045014.
- Encoding a qubit in an oscillator. Physical Review A 64, 012310 (2001). URL https://link.aps.org/doi/10.1103/PhysRevA.64.012310.
- Unsuitability of cubic phase gates for non-Clifford operations on Gottesman-Kitaev-Preskill states. Physical Review A 103, 032409 (2021). URL https://link.aps.org/doi/10.1103/PhysRevA.103.032409.
- Rojkov, I. et al. Two-qubit operations for finite-energy gottesman-kitaev-preskill encodings (2023). eprint arXiv:2305.05262.
- Michael, M. H. et al. New Class of Quantum Error-Correcting Codes for a Bosonic Mode. Physical Review X 6, 031006 (2016). URL https://link.aps.org/doi/10.1103/PhysRevX.6.031006.
- Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009). URL https://www.nature.com/articles/nature08005.
- Eickbusch, A. et al. Fast universal control of an oscillator with weak dispersive coupling to a qubit. Nature Physics 18, 1464–1469 (2022). URL https://www.nature.com/articles/s41567-022-01776-9.
- Reinhold, P. et al. Error-corrected gates on an encoded qubit. Nature Physics 16, 822–826 (2020). URL https://www.nature.com/articles/s41567-020-0931-8.
- Radcliffe, J. M. Some properties of coherent spin states. Journal of Physics A: General Physics 4, 313 (1971). URL https://dx.doi.org/10.1088/0305-4470/4/3/009.
- Robust macroscopic Schrodinger’s cat on a nucleus. Physical Review Research 6, 013101 (2024). URL https://link.aps.org/doi/10.1103/PhysRevResearch.6.013101.
- Quantum dynamics of an electromagnetic mode that cannot contain N photons. Science 348, 776–779 (2015). URL https://www.science.org/doi/10.1126/science.1259345.
- Signoles, A. et al. Confined quantum Zeno dynamics of a watched atomic arrow. Nature Physics 10, 715–719 (2014). URL https://www.nature.com/articles/nphys3076.
- de Fuentes, I. F. et al. Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields (2023). URL http://arxiv.org/abs/2306.07453. ArXiv:2306.07453 [cond-mat, physics:quant-ph].
- Neeley, M. et al. Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722–725 (2009). URL https://www.science.org/doi/abs/10.1126/science.1173440.
- Nguyen, L. B. et al. Empowering high-dimensional quantum computing by traversing the dual bosonic ladder (2023). URL https://arxiv.org/abs/2312.17741. eprint arXiv:2312.17741.
- Bertet, P. et al. Direct Measurement of the Wigner Function of a One-Photon Fock State in a Cavity. Physical Review Letters 89, 200402 (2002). URL https://link.aps.org/doi/10.1103/PhysRevLett.89.200402.
- Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving. npj Quantum Information 3, 1–7 (2017). URL https://www.nature.com/articles/s41534-017-0019-1.
- Touzard, S. et al. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation. Physical Review X 8, 021005 (2018). URL https://link.aps.org/doi/10.1103/PhysRevX.8.021005.
- Zhang, Y. et al. Engineering bilinear mode coupling in circuit QED: Theory and experiment. Physical Review A 99, 012314 (2019). URL https://link.aps.org/doi/10.1103/PhysRevA.99.012314.
- Efficient cavity control with SNAP gates (2020). URL http://arxiv.org/abs/2004.14256. ArXiv:2004.14256 [quant-ph].
- Kudra, M. et al. Robust Preparation of Wigner-Negative States with Optimized SNAP-Displacement Sequences. PRX Quantum 3, 030301 (2022). URL https://link.aps.org/doi/10.1103/PRXQuantum.3.030301.
- Conditional-not Displacement: Fast Multioscillator Control with a Single Qubit. Physical Review X 14, 011055 (2024). URL https://link.aps.org/doi/10.1103/PhysRevX.14.011055.
- Fast quantum control of cavities using an improved protocol without coherent errors (2023). eprint 2310.10498.
- Ganjam, S. et al. Surpassing millisecond coherence times in on-chip superconducting quantum memories by optimizing materials, processes, and circuit design (2023). URL http://arxiv.org/abs/2308.15539.
- Drive-induced nonlinearities of cavity modes coupled to a transmon ancilla. Physical Review A 105, 022423 (2022). URL https://link.aps.org/doi/10.1103/PhysRevA.105.022423.
- Gross, J. A. Designing Codes around Interactions: The Case of a Spin. Physical Review Letters 127, 010504 (2021). URL https://link.aps.org/doi/10.1103/PhysRevLett.127.010504.
- Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer-Verlag, 1994).
- Quantum spin liquids: a review. Reports on Progress in Physics 80, 016502 (2016). URL https://dx.doi.org/10.1088/0034-4885/80/1/016502.
- Quantum spin liquid states. Reviews of Modern Physics 89, 025003 (2017). URL https://link.aps.org/doi/10.1103/RevModPhys.89.025003.
- Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020). URL https://www.science.org/doi/10.1126/science.aay0668.
- Taie, S. et al. Observation of antiferromagnetic correlations in an ultracold SU(N) Hubbard model. Nature Physics 18, 1356–1361 (2022). URL https://www.nature.com/articles/s41567-022-01725-6.
- Rosenberg, E. et al. Dynamics of magnetization at infinite temperature in a Heisenberg spin chain. Science 384, 48–53 (2024). URL https://www.science.org/doi/10.1126/science.adi7877.
- Multi-frequency control and measurement of a spin-7/2 system encoded in a transmon qudit (In preparation).
- Yu, X. et al. Creation and manipulation of schrödinger cat states of a single nuclear spin qudit in silicon (In preparation).
- Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Physical Review B 94, 014506 (2016). URL https://link.aps.org/doi/10.1103/PhysRevB.94.014506.
- Heeres, R. W. et al. Cavity state manipulation using photon-number selective phase gates. Phys. Rev. Lett. 115, 137002 (2015). URL https://link.aps.org/doi/10.1103/PhysRevLett.115.137002.
- QuTiP 2: A Python framework for the dynamics of open quantum systems. Computer Physics Communications 184, 1234–1240 (2013). URL http://www.sciencedirect.com/science/article/pii/S0010465512003955.
- Circuit quantum electrodynamics. Reviews of Modern Physics 93, 025005 (2021). URL https://link.aps.org/doi/10.1103/RevModPhys.93.025005.
- Experimental realization of any discrete unitary operator. Physical Review Letters 73, 58–61 (1994). URL https://link.aps.org/doi/10.1103/PhysRevLett.73.58.
- Dolan, G. J. Offset masks for lift‐off photoprocessing. Applied Physics Letters 31, 337–339 (1977). URL https://doi.org/10.1063/1.89690.
- Wigner, E. Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Vieweg+Teubner Verlag, Wiesbaden, 1931). URL http://link.springer.com/10.1007/978-3-663-02555-9.
- Chou, K. S. Teleported operations between logical qubits in circuit quantum electrodynamics. Ph.D. thesis, Yale University (2018).
- Stratonovich, R. L. On Distributions in Representation Space. Journal of Experimental and Theoretical Physics 4, 891 (1957). URL http://jetp.ras.ru/cgi-bin/e/index/e/4/6/p891?a=list.
- Agarwal, G. S. Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions. Physical Review A 24, 2889–2896 (1981). URL https://link.aps.org/doi/10.1103/PhysRevA.24.2889.
- Continuous phase-space representations for finite-dimensional quantum states and their tomography. Physical Review A 101, 022318 (2020). URL https://link.aps.org/doi/10.1103/PhysRevA.101.022318.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.