Measures, modular forms, and summation formulas of Poisson type (2405.15620v1)
Abstract: In this article, we show that Fourier eigenmeasures supported on spheres with radii given by a locally finite sequence, which we call $k$-spherical measures, correspond to Fourier series exhibiting a modular-type transformation behaviour with respect to the metaplectic group. A familiar subset of such Fourier series comprises holomorphic modular forms. This allows us to construct $k$-spherical eigenmeasures and derive Poisson-type summation formulas, thereby recovering formulas of a similar nature established by Cohn-Gon\c{c}alves, Lev-Reti, and Meyer, among others. Additionally, we extend our results to higher dimensions, where Hilbert modular forms yield higher-dimensional $k$-spherical measures.
- Loren Argabright and Jesûs Gil de Lamadrid. Fourier analysis of unbounded measures on locally compact abelian groups. American Mathematical Society, Providence, RI, 1974.
- A radial analogue of Poisson’s summation formula with applications to powder diffraction and pinwheel patterns. J. Geom. Phys., 57(5):1331–1343, 2007.
- Aperiodic Order. Vol. 1. Cambridge University Press, Cambridge, 2013.
- Michael Baake and Uwe Grimm, editors. Aperiodic Order. Vol. 2. Cambridge University Press, Cambridge, 2017.
- The Fourier transform of multiradial functions. Monatsh. Math., 175(1):43–64, 2014.
- On eigenmeasures under Fourier transform. J. Fourier Anal. Appl., 29(5):Paper No. 65, 1–33, 2023.
- Pure point measures with sparse support and sparse Fourier-Bohr support. Trans. London Math. Soc., 7(1):1–32, 2020.
- The 1-2-3 of modular forms. Springer, Berlin, 2008.
- An optimal uncertainty principle in twelve dimensions via modular forms. Invent. Math., 217(3):799–831, 2019.
- The sphere packing problem in dimension 24. Ann. of Math. (2), 185(3):1017–1033, 2017.
- Universal optimality of the E8subscript𝐸8E_{8}italic_E start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and Leech lattices and interpolation formulas. Ann. of Math. (2), 196(3):983–1082, 2022.
- Modular forms, A classical approach. American Mathematical Society, Providence, RI, 2017.
- S. Yu. Favorov. Almost periodic distributions and crystalline measures. Mat. Stud., 61(1):97–108, 2024.
- Cohomology of Fuchsian groups and Fourier interpolation. https://mgerbelli.github.io/website/Interpolation.pdf.
- Felipe Gonçalves. A Classification of Fourier Summation Formulas and Crystalline Measures, 2024. arXiv:2312.11185.
- On Fourier transforms of radial functions and distributions. J. Fourier Anal. Appl., 19(1):167–179, 2013.
- Andrew Paul Guinand. Concordance and the harmonic analysis of sequences. Acta Math., 101:235–271, 1959.
- Henryk Iwaniec. Topics in Classical Automorphic Forms. American Mathematical Society, Providence, RI, 1997.
- Günter Köhler. Eta products and theta series identities. Springer, Heidelberg, 2011.
- Mihail N. Kolountzakis. Fourier pairs of discrete support with little structure. J. Fourier Anal. Appl., 22(1):1–5, 2016.
- Stable polynomials and crystalline measures. J. Math. Phys., 61(8):083501, 13, 2020.
- Jeffrey C. Lagarias. Mathematical quasicrystals and the problem of diffraction. In M. Baake and R.V. Moody, editors, Directions in mathematical quasicrystals, CRM Monogr. Ser., pages 61–93. Amer. Math. Soc., Providence, RI, 2000.
- Modulated crystals and almost periodic measures. Lett. Math. Phys., 110(12):3435–3472, 2020.
- Measures with uniformly discrete support and spectrum. C. R. Math. Acad. Sci. Paris, 351(15-16):599–603, 2013.
- Quasicrystals and Poisson’s summation formula. Invent. Math., 200(2):585–606, 2015.
- Quasicrystals with discrete support and spectrum. Rev. Mat. Iberoam., 32(4):1341–1352, 2016.
- Fourier quasicrystals and discreteness of the diffraction spectrum. Adv. Math., 315:1–26, 2017.
- Poisson summation formulas involving the sum-of-squares function. Israel J. Math., 246(1):403–421, 2021.
- Yves Meyer. Quasicrystals, Diophantine approximation and algebraic numbers. In F. Axel and D. Gratias, editors, Beyond quasicrystals (Les Houches, 1994), pages 3–16. Springer, Berlin, 1995.
- Yves Meyer. Measures with locally finite support and spectrum. Proc. Natl. Acad. Sci. USA, 113(12):3152–3158, 2016.
- Yves Meyer. Guinand’s measures are almost periodic distributions. Bull. Hellenic Math. Soc., 61:11–20, 2017.
- Yves Meyer. Crystalline measures in two dimensions. Publ. Mat., 67(1):469–480, 2023.
- Christoph Richard. Dense Dirac combs in Euclidean space with pure point diffraction. J. Math. Phys., 44(10):4436–4449, 2003.
- Pure point diffraction and Poisson summation. Ann. Henri Poincaré, 18(12):3903–3931, 2017.
- Fourier non-uniqueness sets from totally real number fields. Comment. Math. Helv., 97(3):513–553, 2022.
- Fourier interpolation on the real line. Publ. Math. Inst. Hautes Études Sci., 129:51–81, 2019.
- Martin Stoller. Fourier interpolation from spheres. Trans. Amer. Math. Soc., 374(11):8045–8079, 2021.
- Nicolae Strungaru. On weighted Dirac combs supported inside model sets. J. Phys. A, 47(33):335202, 19, 2014.
- Maryna S. Viazovska. The sphere packing problem in dimension 8. Ann. of Math. (2), 185(3):991–1015, 2017.
- Dimension formulas for modular form spaces with character for Fricke groups. Acta Arith., 206(4):291–311, 2022.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.