Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Channel Estimation and Reconstruction in Fluid Antenna System: Oversampling is Essential (2405.15607v2)

Published 24 May 2024 in eess.SP

Abstract: Fluid antenna system (FAS) has recently surfaced as a promising technology for the upcoming sixth generation (6G) wireless networks. Unlike traditional antenna system (TAS) with fixed antenna location, FAS introduces a flexible component in which the radiating element can switch its position within a predefined space. This capability allows FAS to achieve additional diversity and multiplexing gains. Nevertheless, to fully reap the benefits of FAS, obtaining channel state information (CSI) over the predefined space is crucial. In this paper, we study the system with a transmitter equipped with a traditional fixed antenna and a receiver with a fluid antenna by considering an electromagnetic-compliant channel model. We address the challenges of channel estimation and reconstruction using Nyquist sampling and maximum likelihood estimation (MLE) methods. Our analysis reveals a fundamental tradeoff between the accuracy of the reconstructed channel and the number of estimated channels, indicating that half-wavelength sampling is insufficient for perfect reconstruction and that oversampling is essential to enhance accuracy. Despite its advantages, oversampling can introduce practical challenges. Consequently, we propose a suboptimal sampling distance that facilitates efficient channel reconstruction. In addition, we employ the MLE method to bound the channel estimation error by $\epsilon$, with a specific confidence interval (CI). Our findings enable us to determine the minimum number of estimated channels and the total number of pilot symbols required for efficient channel reconstruction in a given space. Lastly, we investigate the rate performance of FAS and TAS and demonstrate that FAS with imperfect CSI can outperform TAS with perfect CSI. In contrast to existing works, we also show that there is an optimal fluid antenna size that maximizes the achievable rate.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. S. Dash, C. Psomas, and I. Krikidis, “Selection of metallic liquid in sub-6 GHz antenna design for 6G networks,” Scientific Reports, vol. 13, no. 1, p. 20551, Nov. 2023.
  2. Y. Shen, K.-F. Tong, and K.-K. Wong, “Radiation pattern diversified single-fluid-channel surface-wave antenna for mobile communications,” in Proc. IEEE-APS Topical Conf. Antennas & Propag. Wireless Commun., pp. 49–51, 5-9 Sept. 2022, Cape Town, South Africa.
  3. L. Jing, M. Li, and R. Murch, “Compact pattern reconfigurable pixel antenna with diagonal pixel connections,” IEEE Trans. Antennas & Propag., vol. 70, no. 10, pp. 8951–8961, Oct. 2022.
  4. S. Basbug, “Design and synthesis of antenna array with movable elements along semicircular paths,” IEEE Antennas & Wireless Propag. Lett., vol. 16, pp. 3059–3062, Oct. 2017.
  5. K.-K. Wong, K.-F. Tong, Y. Zhang, and Z. Zheng, “Fluid antenna system for 6G: When Bruce Lee inspires wireless communications,” Elect. Lett., vol. 56, no. 24, pp. 1288–1290, Nov. 2020.
  6. K.-K. Wong, K.-F. Tong, Y. Shen, Y. Chen, and Y. Zhang, “Bruce Lee-inspired fluid antenna system: Six research topics and the potentials for 6G,” Frontiers Commun. Netw., vol. 3, no. 853416, Mar. 2022.
  7. K.-K. Wong, A. Shojaeifard, K.-F. Tong, and Y. Zhang, “Fluid antenna systems,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1950–1962, Mar. 2021.
  8. M. Khammassi, A. Kammoun, and M.-S. Alouini, “A new analytical approximation of the fluid antenna system channel,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 8843–8858, Dec. 2023.
  9. P. Ramirez-Espinosa, D. Morales-Jimenez, and K.-K. Wong, “A new spatial block-correlation model for fluid antenna systems,” arXiv preprint, arXiv:2401.04513, 2024.
  10. W. K. New, K.-K. Wong, H. Xu, K.-F. Tong, and C.-B. Chae, “Fluid antenna system: New insights on outage probability and diversity gain,” IEEE Trans. Wireless Commun., vol. 23, no. 1, pp. 128–140, Jan. 2024.
  11. J. D. Vega-Sánchez, A. E. López-Ramírez, L. Urquiza-Aguiar, and D. P. M. Osorio, “Novel expressions for the outage probability and diversity gains in fluid antenna system,” IEEE Wirel. Commun. Lett., vol. 13, no. 2, pp. 372–376, Feb. 2024
  12. W. K. New, K.-K. Wong, H. Xu, K.-F. Tong, and C.-B. Chae, “An information-theoretic characterization of MIMO-FAS: Optimization, diversity-multiplexing tradeoff and q𝑞qitalic_q-outage capacity,” IEEE Trans. Wireless Commun., early access, doi:10.1109/TWC.2023.3327063, 2024.
  13. Y. Chen, S. Li, Y. Hou, and X. Tao, “Energy-efficiency optimization for slow fluid antenna multiple access using mean-field game,” IEEE Wireless Commun. Lett., vol. 13, no. 4, pp. 915–918, Apr. 2024.
  14. L. Zhu, W. Ma, B. Ning, and R. Zhang, “Movable-antenna enhanced multiuser communication via antenna position optimization,” IEEE Trans. Wireless Commun., early access, doi:10.1109/TWC.2023.3338626, 2023.
  15. J. D. Vega-Sánchez, L. Urquiza-Aguiar, H. R. C. Mora, N. V. O. Garzón and D. P. M. Osorio, “Fluid antenna system: Secrecy outage probability analysis,” IEEE Trans. Veh. Technol., early access, doi:10.1109/TVT.2024.3376475, 2024.
  16. L. Tlebaldiyeva, S. Arzykulov, T. A. Tsiftsis, and G. Nauryzbayev, “Full-duplex cooperative NOMA-based mmWave networks with fluid antenna system (FAS) receivers,” in Proc. Inter. Balkan Conf. Commun. Netw., 5-8 Jun. 2023, Istanbul, Turkey.
  17. C. Skouroumounis and I. Krikidis, “Fluid antenna-aided full duplex communications: A macroscopic point-of-view,” IEEE J. Select. Areas Commun., vol. 41, no. 9, pp. 2879–2892, Sept. 2023.
  18. Y. Chen, and T. Xu, “Fluid antenna index modulation communications,” IEEE Wireless Commun. Lett., vol. 13, no. 4, pp. 1203–1207, Apr. 2024.
  19. L. Zhu and K. K. Wong, “Historical review of fluid antenna and movable antenna,” arXiv preprint, arXiv:2401.02362v2, 2024.
  20. M. Wang, F. Gao, S. Jin, and H. Lin, “An overview of enhanced massive MIMO with array signal processing techniques,” IEEE J. Select. Topics Sig. Process., vol. 13, no. 5, pp. 886–901, Sept. 2019.
  21. D. Neumann, T. Wiese, and W. Utschick, “Learning the MMSE channel estimator,” IEEE Trans. Sig. Process., vol. 66, no. 11, pp. 2905–2917, Jun. 2018.
  22. L. Cheng, F. Yin, S. Theodoridis, S. Chatzis, and T.-H. Chang, “Rethinking Bayesian learning for data analysis: The art of prior and inference in sparsity-aware modeling,” IEEE Sig. Process. Mag., vol. 39, no. 6, pp. 18–52, Nov. 2022.
  23. M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From theory to applications,” IEEE Trans. Sig. Process., vol. 59, no. 9, pp. 4053–4085, Sept. 2011.
  24. G. Zhou, C. Pan, H. Ren, P. Popovski, and A. L. Swindlehurst, “Channel estimation for RIS-aided multiuser millimeter-wave systems,” IEEE Trans. Sig. Process., vol. 70, pp. 1478–1492, Mar. 2022.
  25. G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels,” IEEE Trans. Sig. Process., vol. 68, pp. 5092–5106, Aug. 2020.
  26. N. Waqar, K.-K. Wong, K.-F. Tong, A. Sharples, and Y. Zhang, “Deep learning enabled slow fluid antenna multiple access,” IEEE Commun. Lett., vol. 27, no. 3, pp. 861–865, Mar. 2023.
  27. Z. Zhang, J. Zhu, L. Dai, and R. W. Heath Jr, “Successive Bayesian reconstructor for channel estimation in fluid antenna systems,” in Proc. IEEE Wireless Commun. Netw. Conf., 21-24 Apr. 2024, Dubai, United Arab Emirates.
  28. W. Ma, L. Zhu, and R. Zhang, “Compressed sensing based channel estimation for movable antenna communications,” IEEE Commun. Lett., vol. 27, no. 10, pp. 2747–2751, Oct. 2023.
  29. J. Zhu, Z. Wan, L. Dai, M. Debbah, and H. V. Poor, “Electromagnetic information theory: Fundamentals, modeling, applications, and open problems,” IEEE Wireless Commun., early access, doi:10.1109/MWC.019.2200602, 2024.
  30. A. Pizzo, A. d. J. Torres, L. Sanguinetti, and T. L. Marzetta, “Nyquist sampling and degrees of freedom of electromagnetic fields,” IEEE Trans. Sig. Process., vol. 70, pp. 3935–3947, Jun. 2022.
  31. M. Di Renzo and M. D. Migliore, “Electromagnetic signal and information theory–on electromagnetically consistent communication models for the transmission and processing of information,” arXiv preprint, arXiv:2311.06661, 2023.
  32. T. L. Marzetta, “Spatially-stationary propagating random field model for massive MIMO small-scale fading,” in Proc. IEEE Int. Symp. Inform. Theory, pp. 391–395, 17-22 Jun. 2018, Vail, Colorado, USA.
  33. A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Spatially-stationary model for holographic MIMO small-scale fading,” IEEE J. Select. Areas Commun., vol. 38, no. 9, pp. 1964–1979, Sept. 2020.
  34. V. Balakrishnan, “All about the Dirac delta function (?),” Resonance, vol. 8, no. 8, pp. 48–58, 2003.
  35. H. Landau, “An overview of time and frequency limiting,” Fourier Tech. & Appl., pp. 201–220, 1985.
  36. C. Shannon, “Communication in the presence of noise,” Proc. IRE, vol. 37, no. 1, pp. 10–21, 1949.
  37. M. Medard, “The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel,” IEEE Trans. Inform. Theory, vol. 46, no. 3, pp. 933–946, May 2000.
  38. E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: Information-theoretic and communications aspects,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2619–2692, Oct. 1998.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.