Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic, Symmetry-Preserving, and Hardware-Adaptable Circuits for Quantum Computing Many-Body States and Correlators of the Anderson Impurity Model (2405.15069v1)

Published 23 May 2024 in quant-ph and cond-mat.str-el

Abstract: We present a hardware-reconfigurable ansatz on $N_q$-qubits for the variational preparation of many-body states of the Anderson impurity model (AIM) with $N_{\text{imp}}+N_{\text{bath}}=N_q/2$ sites, which conserves total charge and spin z-component within each variational search subspace. The many-body ground state of the AIM is determined as the minimum over all minima of $O(N_q2)$ distinct charge-spin sectors. Hamiltonian expectation values are shown to require $\omega(N_q) < N_{\text{meas.}} \leq O(N_{\text{imp}}N_{\text{bath}})$ symmetry-preserving, parallelizable measurement circuits, each amenable to post-selection. To obtain the one-particle impurity Green's function we show how initial Krylov vectors can be computed via mid-circuit measurement and how Lanczos iterations can be computed using the symmetry-preserving ansatz. For a single-impurity Anderson model with a number of bath sites increasing from one to six, we show using numerical emulation that the ease of variational ground-state preparation is suggestive of linear scaling in circuit depth and sub-quartic scaling in optimizer complexity. We therefore expect that, combined with time-dependent methods for Green's function computation, our ansatz provides a useful tool to account for electronic correlations on early fault-tolerant processors. Finally, with a view towards computing real materials properties of interest like magnetic susceptibilities and electron-hole propagators, we provide a straightforward method to compute many-body, time-dependent correlation functions using a combination of time evolution, mid-circuit measurement-conditioned operations, and the Hadamard test.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. N. Schuch and F. Verstraete, Computational complexity of interacting electrons and fundamental limitations of density functional theory, Nature physics 5, 732 (2009).
  2. M. van Schilfgaarde, T. Kotani, and S. Faleev, Quasiparticle self-consistent g⁢w𝑔𝑤gwitalic_g italic_w theory, Phys. Rev. Lett. 96, 226402 (2006).
  3. J. M. Tomczak, Qsgw+ dmft: an electronic structure scheme for the iron pnictides and beyond, in Journal of Physics: Conference Series, Vol. 592 (IOP Publishing, 2015) p. 012055.
  4. J. Lee and K. Haule, Diatomic molecule as a testbed for combining dmft with electronic structure methods such as g⁢w𝑔𝑤gwitalic_g italic_w and dft, Phys. Rev. B 95, 155104 (2017).
  5. Generally, a “site” can refer to an atom, a collection of atoms, or some collection of interacting electronic orbitals. Here we consider it a single spatially localized site with one spin-up and one spin-down degree of freedom.
  6. R. M. Martin, L. Reining, and D. M. Ceperly, Interacting Electrons: Theory and Computational Approaches (Cambridge University Press, 2016).
  7. M. Caffarel and W. Krauth, Exact diagonalization approach to correlated fermions in infinite dimensions: Mott transition and superconductivity, Phys. Rev. Lett. 72, 1545 (1994).
  8. P. Werner and A. J. Millis, Hybridization expansion impurity solver: General formulation and application to kondo lattice and two-orbital models, Phys. Rev. B 74, 155107 (2006).
  9. K. Haule, Quantum monte carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base, Phys. Rev. B 75, 155113 (2007).
  10. S. Bravyi and D. Gosset, Complexity of quantum impurity problems, Communications in Mathematical Physics 356, 451 (2017).
  11. T. Zhu and G. K.-L. Chan, Ab initio full cell g⁢w+DMFT𝑔𝑤DMFTgw+\mathrm{DMFT}italic_g italic_w + roman_DMFT for correlated materials, Phys. Rev. X 11, 021006 (2021).
  12. R. Bulla, T. A. Costi, and T. Pruschke, Numerical renormalization group method for quantum impurity systems, Reviews of Modern Physics 80, 395 (2008).
  13. D. J. García, K. Hallberg, and M. J. Rozenberg, Dynamical mean field theory with the density matrix renormalization group, Phys. Rev. Lett. 93, 246403 (2004).
  14. R.-Q. He and Z.-Y. Lu, Quantum renormalization groups based on natural orbitals, Physical Review B 89, 085108 (2014).
  15. M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).
  16. R. Manenti and M. Motta, Quantum information science (Oxford University Press, 2023).
  17. E. H. Lieb and D. W. Robinson, The finite group velocity of quantum spin systems, Communications in mathematical physics 28, 251 (1972).
  18. S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-robinson bounds and the generation of correlations and topological quantum order, Physical review letters 97, 050401 (2006).
  19. R. Acharya et al., Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023a).
  20. B. M. Terhal and D. P. DiVincenzo, Problem of equilibration and the computation of correlation functions on a quantum computer, Physical Review A 61, 022301 (2000).
  21. G. Rohringer, A. Valli, and A. Toschi, Local electronic correlation at the two-particle level, Phys. Rev. B 86, 125114 (2012).
  22. J. Kaufmann, P. Gunacker, and K. Held, Continuous-time quantum monte carlo calculation of multiorbital vertex asymptotics, Phys. Rev. B 96, 035114 (2017).
  23. R. Sahay and R. Verresen, Finite-depth preparation of tensor network states from measurement, arXiv preprint arXiv:2404.17087  (2024).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 6 likes about this paper.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube