Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Giant graviton expansions and ETW brane (2405.14564v2)

Published 23 May 2024 in hep-th

Abstract: We study the giant gravitons in the $AdS_4$ bagpipe geometries involving end-of-the-world (ETW) brane constructed by a single $5$-brane and either two stacks or one stack of D3-branes in Type IIB string theory. From the exact formulae and giant graviton expansions of the half-indices for the half-BPS boundary conditions and interfaces in $\mathcal{N}=4$ super Yang-Mills theory, we obtain the BPS spectra of the fluctuation modes of the $AdS_4$ bagpipe geometries including the ETW brane region.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. J. McNamara and C. Vafa, “Cobordism Classes and the Swampland,” arXiv:1909.10355 [hep-th].
  2. D. Gaiotto and E. Witten, “Supersymmetric Boundary Conditions in N=4 Super Yang-Mills Theory,” J. Statist. Phys. 135 (2009) 789–855, arXiv:0804.2902 [hep-th].
  3. D. Gaiotto and E. Witten, “Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N=4 Super Yang-Mills Theory,” JHEP 1006 (2010) 097, arXiv:0804.2907 [hep-th].
  4. A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics,” Nucl.Phys. B492 (1997) 152–190, arXiv:hep-th/9611230 [hep-th].
  5. D. Gaiotto and E. Witten, “S-Duality of Boundary Conditions In N=4 Super Yang-Mills Theory,” Adv. Theor. Math. Phys. 13 no. 3, (2009) 721–896, arXiv:0807.3720 [hep-th].
  6. A. Karch and L. Randall, “Locally localized gravity,” JHEP 05 (2001) 008, arXiv:hep-th/0011156.
  7. A. Karch and L. Randall, “Open and closed string interpretation of SUSY CFT’s on branes with boundaries,” JHEP 06 (2001) 063, arXiv:hep-th/0105132.
  8. T. Takayanagi, “Holographic Dual of BCFT,” Phys. Rev. Lett. 107 (2011) 101602, arXiv:1105.5165 [hep-th].
  9. A. Karch, H. Sun, and C. F. Uhlemann, “Double holography in string theory,” JHEP 10 (2022) 012, arXiv:2206.11292 [hep-th].
  10. E. D’Hoker, J. Estes, and M. Gutperle, “Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus,” JHEP 06 (2007) 021, arXiv:0705.0022 [hep-th].
  11. E. D’Hoker, J. Estes, and M. Gutperle, “Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus,” JHEP 06 (2007) 022, arXiv:0705.0024 [hep-th].
  12. C. Bachas and I. Lavdas, “Massive Anti-de Sitter Gravity from String Theory,” JHEP 11 (2018) 003, arXiv:1807.00591 [hep-th].
  13. J. McGreevy, L. Susskind, and N. Toumbas, “Invasion of the giant gravitons from Anti-de Sitter space,” JHEP 06 (2000) 008, arXiv:hep-th/0003075.
  14. T. Dimofte, D. Gaiotto, and S. Gukov, “3-Manifolds and 3d Indices,” Adv. Theor. Math. Phys. 17 no. 5, (2013) 975–1076, arXiv:1112.5179 [hep-th].
  15. D. Gang, E. Koh, and K. Lee, “Line Operator Index on S1⁢¥⁢t⁢i⁢m⁢e⁢s⁢S3superscript𝑆1¥𝑡𝑖𝑚𝑒𝑠superscript𝑆3S^{1}\textyen timesS^{3}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ¥ italic_t italic_i italic_m italic_e italic_s italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” JHEP 05 (2012) 007, arXiv:1201.5539 [hep-th].
  16. D. Gaiotto and T. Okazaki, “Dualities of Corner Configurations and Supersymmetric Indices,” JHEP 11 (2019) 056, arXiv:1902.05175 [hep-th].
  17. T. Okazaki, “Mirror symmetry of 3D 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 gauge theories and supersymmetric indices,” Phys. Rev. D100 no. 6, (2019) 066031, arXiv:1905.04608 [hep-th].
  18. Y. Hatsuda and T. Okazaki, “Exact 𝒩𝒩\mathcal{N}caligraphic_N = 2∗ Schur line defect correlators,” JHEP 06 (2023) 169, arXiv:2303.14887 [hep-th].
  19. Y. Hatsuda and T. Okazaki, “Large N and large representations of Schur line defect correlators,” JHEP 01 (2024) 096, arXiv:2309.11712 [hep-th].
  20. Y. Imamura and M. Inoue, “Brane expansions for anti-symmetric line operator index,” arXiv:2404.08302 [hep-th].
  21. O. Aharony, L. Berdichevsky, M. Berkooz, and I. Shamir, “Near-horizon solutions for D3-branes ending on 5-branes,” Phys. Rev. D 84 (2011) 126003, arXiv:1106.1870 [hep-th].
  22. B. Assel, C. Bachas, J. Estes, and J. Gomis, “Holographic Duals of D=3 N=4 Superconformal Field Theories,” JHEP 08 (2011) 087, arXiv:1106.4253 [hep-th].
  23. M. V. Raamsdonk and C. Waddell, “Holographic and localization calculations of boundary F for 𝒩𝒩\mathcal{N}caligraphic_N = 4 SUSY Yang-Mills theory,” JHEP 02 (2021) 222, arXiv:2010.14520 [hep-th].
  24. M. Van Raamsdonk and C. Waddell, “Finding A⁢d⁢S5×S5𝐴𝑑superscript𝑆5superscript𝑆5AdS^{5}\times S^{5}italic_A italic_d italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT in 2+1 dimensional SCFT physics,” JHEP 11 (2021) 145, arXiv:2109.04479 [hep-th].
  25. S. Demulder, A. Gnecchi, I. Lavdas, and D. Lust, “Islands and light gravitons in type IIB string theory,” JHEP 02 (2023) 016, arXiv:2204.03669 [hep-th].
  26. J. Huertas and A. M. Uranga, “Aspects of dynamical cobordism in AdS/CFT,” JHEP 08 (2023) 140, arXiv:2306.07335 [hep-th].
  27. R. C. Myers, “Dielectric branes,” JHEP 12 (1999) 022, arXiv:hep-th/9910053.
  28. M. T. Grisaru, R. C. Myers, and O. Tafjord, “SUSY and goliath,” JHEP 08 (2000) 040, arXiv:hep-th/0008015.
  29. A. Hashimoto, S. Hirano, and N. Itzhaki, “Large branes in AdS and their field theory dual,” JHEP 08 (2000) 051, arXiv:hep-th/0008016.
  30. S. Corley, A. Jevicki, and S. Ramgoolam, “Exact correlators of giant gravitons from dual N=4 SYM theory,” Adv. Theor. Math. Phys. 5 (2002) 809–839, arXiv:hep-th/0111222.
  31. H. Lin, O. Lunin, and J. M. Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 10 (2004) 025, arXiv:hep-th/0409174.
  32. D. Berenstein, “A Toy model for the AdS / CFT correspondence,” JHEP 07 (2004) 018, arXiv:hep-th/0403110.
  33. V. Balasubramanian, M. Berkooz, A. Naqvi, and M. J. Strassler, “Giant gravitons in conformal field theory,” JHEP 04 (2002) 034, arXiv:hep-th/0107119.
  34. A. Mikhailov, “Giant gravitons from holomorphic surfaces,” JHEP 11 (2000) 027, arXiv:hep-th/0010206.
  35. G. Eleftheriou, S. Murthy, and M. Rosselló, “The giant graviton expansion in A⁢d⁢S5⁢t⁢i⁢m⁢e⁢s⁢S5𝐴𝑑subscript𝑆5𝑡𝑖𝑚𝑒𝑠superscript𝑆5AdS_{5}timesS^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_t italic_i italic_m italic_e italic_s italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” arXiv:2312.14921 [hep-th].
  36. S. R. Das, A. Jevicki, and S. D. Mathur, “Vibration modes of giant gravitons,” Phys. Rev. D 63 (2001) 024013, arXiv:hep-th/0009019.
  37. J. H. Lee, “Trace relations and open string vacua,” JHEP 02 (2024) 224, arXiv:2312.00242 [hep-th].
  38. E. Deddo, J. T. Liu, L. A. Pando Zayas, and R. J. Saskowski, “The Giant Graviton Expansion from Bubbling Geometry,” arXiv:2402.19452 [hep-th].
  39. S. S. Razamat and B. Willett, “Down the rabbit hole with theories of class ¥⁢m⁢a⁢t⁢h⁢c⁢a⁢l⁢S¥𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑆\textyen mathcal{S}¥ italic_m italic_a italic_t italic_h italic_c italic_a italic_l italic_S,” JHEP 10 (2014) 99, arXiv:1403.6107 [hep-th].
  40. D. Gaiotto, L. Rastelli, and S. S. Razamat, “Bootstrapping the superconformal index with surface defects,” JHEP 01 (2013) 022, arXiv:1207.3577 [hep-th].
  41. E. Getzler and M. M. Kapranov, “Modular operads,” Compositio Math. 110 no. 1, (1998) 65–126. https://doi.org/10.1023/A:1000245600345.
  42. G. Meinardus, “Asymptotische Aussagen über Partitionen,” Math. Z. 59 (1954) 388–398. https://doi.org/10.1007/BF01180268.
  43. G. E. Andrews, The theory of partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.
  44. Y. Hatsuda and T. Okazaki, “¥⁢m⁢a⁢t⁢h⁢c⁢a⁢l⁢N¥𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑁\textyen mathcal{N}¥ italic_m italic_a italic_t italic_h italic_c italic_a italic_l italic_N = 2∗ Schur indices,” JHEP 01 (2023) 029, arXiv:2208.01426 [hep-th].
  45. R. Arai and Y. Imamura, “Finite N𝑁Nitalic_N Corrections to the Superconformal Index of S-fold Theories,” PTEP 2019 no. 8, (2019) 083B04, arXiv:1904.09776 [hep-th].
  46. D. Gaiotto and J. H. Lee, “The Giant Graviton Expansion,” arXiv:2109.02545 [hep-th].
  47. J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, “An Index for 4 dimensional super conformal theories,” Commun. Math. Phys. 275 (2007) 209–254, arXiv:hep-th/0510251 [hep-th].
  48. M. Dewar and M. R. Murty, “An asymptotic formula for the coefficients of j⁢(z)𝑗𝑧j(z)italic_j ( italic_z ),” Int. J. Number Theory 9 no. 3, (2013) 641–652. https://doi.org/10.1142/S1793042112501539.
  49. G.-N. Han and H. Xiong, “Some useful theorems for asymptotic formulas and their applications to skew plane partitions and cylindric partitions,” Adv. in Appl. Math. 96 (2018) 18–38. https://doi.org/10.1016/j.aam.2017.12.007.
  50. H. Hayashi, T. Nosaka, and T. Okazaki, “Asymptotic degeneracies of M2-brane SCFTs,” arXiv:2307.02901 [hep-th].
  51. R. Arai, S. Fujiwara, Y. Imamura, and T. Mori, “Schur index of the ¥⁢c⁢a⁢l⁢N=4¥𝑐𝑎𝑙𝑁4{\textyen calN}=4¥ italic_c italic_a italic_l italic_N = 4 U⁢(N)𝑈𝑁U(N)italic_U ( italic_N ) supersymmetric Yang-Mills theory via the AdS/CFT correspondence,” Phys. Rev. D 101 no. 8, (2020) 086017, arXiv:2001.11667 [hep-th].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube