Giant graviton expansions and ETW brane (2405.14564v2)
Abstract: We study the giant gravitons in the $AdS_4$ bagpipe geometries involving end-of-the-world (ETW) brane constructed by a single $5$-brane and either two stacks or one stack of D3-branes in Type IIB string theory. From the exact formulae and giant graviton expansions of the half-indices for the half-BPS boundary conditions and interfaces in $\mathcal{N}=4$ super Yang-Mills theory, we obtain the BPS spectra of the fluctuation modes of the $AdS_4$ bagpipe geometries including the ETW brane region.
- J. McNamara and C. Vafa, “Cobordism Classes and the Swampland,” arXiv:1909.10355 [hep-th].
- D. Gaiotto and E. Witten, “Supersymmetric Boundary Conditions in N=4 Super Yang-Mills Theory,” J. Statist. Phys. 135 (2009) 789–855, arXiv:0804.2902 [hep-th].
- D. Gaiotto and E. Witten, “Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N=4 Super Yang-Mills Theory,” JHEP 1006 (2010) 097, arXiv:0804.2907 [hep-th].
- A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics,” Nucl.Phys. B492 (1997) 152–190, arXiv:hep-th/9611230 [hep-th].
- D. Gaiotto and E. Witten, “S-Duality of Boundary Conditions In N=4 Super Yang-Mills Theory,” Adv. Theor. Math. Phys. 13 no. 3, (2009) 721–896, arXiv:0807.3720 [hep-th].
- A. Karch and L. Randall, “Locally localized gravity,” JHEP 05 (2001) 008, arXiv:hep-th/0011156.
- A. Karch and L. Randall, “Open and closed string interpretation of SUSY CFT’s on branes with boundaries,” JHEP 06 (2001) 063, arXiv:hep-th/0105132.
- T. Takayanagi, “Holographic Dual of BCFT,” Phys. Rev. Lett. 107 (2011) 101602, arXiv:1105.5165 [hep-th].
- A. Karch, H. Sun, and C. F. Uhlemann, “Double holography in string theory,” JHEP 10 (2022) 012, arXiv:2206.11292 [hep-th].
- E. D’Hoker, J. Estes, and M. Gutperle, “Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus,” JHEP 06 (2007) 021, arXiv:0705.0022 [hep-th].
- E. D’Hoker, J. Estes, and M. Gutperle, “Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus,” JHEP 06 (2007) 022, arXiv:0705.0024 [hep-th].
- C. Bachas and I. Lavdas, “Massive Anti-de Sitter Gravity from String Theory,” JHEP 11 (2018) 003, arXiv:1807.00591 [hep-th].
- J. McGreevy, L. Susskind, and N. Toumbas, “Invasion of the giant gravitons from Anti-de Sitter space,” JHEP 06 (2000) 008, arXiv:hep-th/0003075.
- T. Dimofte, D. Gaiotto, and S. Gukov, “3-Manifolds and 3d Indices,” Adv. Theor. Math. Phys. 17 no. 5, (2013) 975–1076, arXiv:1112.5179 [hep-th].
- D. Gang, E. Koh, and K. Lee, “Line Operator Index on S1¥timesS3superscript𝑆1¥𝑡𝑖𝑚𝑒𝑠superscript𝑆3S^{1}\textyen timesS^{3}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ¥ italic_t italic_i italic_m italic_e italic_s italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” JHEP 05 (2012) 007, arXiv:1201.5539 [hep-th].
- D. Gaiotto and T. Okazaki, “Dualities of Corner Configurations and Supersymmetric Indices,” JHEP 11 (2019) 056, arXiv:1902.05175 [hep-th].
- T. Okazaki, “Mirror symmetry of 3D 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 gauge theories and supersymmetric indices,” Phys. Rev. D100 no. 6, (2019) 066031, arXiv:1905.04608 [hep-th].
- Y. Hatsuda and T. Okazaki, “Exact 𝒩𝒩\mathcal{N}caligraphic_N = 2∗ Schur line defect correlators,” JHEP 06 (2023) 169, arXiv:2303.14887 [hep-th].
- Y. Hatsuda and T. Okazaki, “Large N and large representations of Schur line defect correlators,” JHEP 01 (2024) 096, arXiv:2309.11712 [hep-th].
- Y. Imamura and M. Inoue, “Brane expansions for anti-symmetric line operator index,” arXiv:2404.08302 [hep-th].
- O. Aharony, L. Berdichevsky, M. Berkooz, and I. Shamir, “Near-horizon solutions for D3-branes ending on 5-branes,” Phys. Rev. D 84 (2011) 126003, arXiv:1106.1870 [hep-th].
- B. Assel, C. Bachas, J. Estes, and J. Gomis, “Holographic Duals of D=3 N=4 Superconformal Field Theories,” JHEP 08 (2011) 087, arXiv:1106.4253 [hep-th].
- M. V. Raamsdonk and C. Waddell, “Holographic and localization calculations of boundary F for 𝒩𝒩\mathcal{N}caligraphic_N = 4 SUSY Yang-Mills theory,” JHEP 02 (2021) 222, arXiv:2010.14520 [hep-th].
- M. Van Raamsdonk and C. Waddell, “Finding AdS5×S5𝐴𝑑superscript𝑆5superscript𝑆5AdS^{5}\times S^{5}italic_A italic_d italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT in 2+1 dimensional SCFT physics,” JHEP 11 (2021) 145, arXiv:2109.04479 [hep-th].
- S. Demulder, A. Gnecchi, I. Lavdas, and D. Lust, “Islands and light gravitons in type IIB string theory,” JHEP 02 (2023) 016, arXiv:2204.03669 [hep-th].
- J. Huertas and A. M. Uranga, “Aspects of dynamical cobordism in AdS/CFT,” JHEP 08 (2023) 140, arXiv:2306.07335 [hep-th].
- R. C. Myers, “Dielectric branes,” JHEP 12 (1999) 022, arXiv:hep-th/9910053.
- M. T. Grisaru, R. C. Myers, and O. Tafjord, “SUSY and goliath,” JHEP 08 (2000) 040, arXiv:hep-th/0008015.
- A. Hashimoto, S. Hirano, and N. Itzhaki, “Large branes in AdS and their field theory dual,” JHEP 08 (2000) 051, arXiv:hep-th/0008016.
- S. Corley, A. Jevicki, and S. Ramgoolam, “Exact correlators of giant gravitons from dual N=4 SYM theory,” Adv. Theor. Math. Phys. 5 (2002) 809–839, arXiv:hep-th/0111222.
- H. Lin, O. Lunin, and J. M. Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 10 (2004) 025, arXiv:hep-th/0409174.
- D. Berenstein, “A Toy model for the AdS / CFT correspondence,” JHEP 07 (2004) 018, arXiv:hep-th/0403110.
- V. Balasubramanian, M. Berkooz, A. Naqvi, and M. J. Strassler, “Giant gravitons in conformal field theory,” JHEP 04 (2002) 034, arXiv:hep-th/0107119.
- A. Mikhailov, “Giant gravitons from holomorphic surfaces,” JHEP 11 (2000) 027, arXiv:hep-th/0010206.
- G. Eleftheriou, S. Murthy, and M. Rosselló, “The giant graviton expansion in AdS5timesS5𝐴𝑑subscript𝑆5𝑡𝑖𝑚𝑒𝑠superscript𝑆5AdS_{5}timesS^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_t italic_i italic_m italic_e italic_s italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” arXiv:2312.14921 [hep-th].
- S. R. Das, A. Jevicki, and S. D. Mathur, “Vibration modes of giant gravitons,” Phys. Rev. D 63 (2001) 024013, arXiv:hep-th/0009019.
- J. H. Lee, “Trace relations and open string vacua,” JHEP 02 (2024) 224, arXiv:2312.00242 [hep-th].
- E. Deddo, J. T. Liu, L. A. Pando Zayas, and R. J. Saskowski, “The Giant Graviton Expansion from Bubbling Geometry,” arXiv:2402.19452 [hep-th].
- S. S. Razamat and B. Willett, “Down the rabbit hole with theories of class ¥mathcalS¥𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑆\textyen mathcal{S}¥ italic_m italic_a italic_t italic_h italic_c italic_a italic_l italic_S,” JHEP 10 (2014) 99, arXiv:1403.6107 [hep-th].
- D. Gaiotto, L. Rastelli, and S. S. Razamat, “Bootstrapping the superconformal index with surface defects,” JHEP 01 (2013) 022, arXiv:1207.3577 [hep-th].
- E. Getzler and M. M. Kapranov, “Modular operads,” Compositio Math. 110 no. 1, (1998) 65–126. https://doi.org/10.1023/A:1000245600345.
- G. Meinardus, “Asymptotische Aussagen über Partitionen,” Math. Z. 59 (1954) 388–398. https://doi.org/10.1007/BF01180268.
- G. E. Andrews, The theory of partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.
- Y. Hatsuda and T. Okazaki, “¥mathcalN¥𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑁\textyen mathcal{N}¥ italic_m italic_a italic_t italic_h italic_c italic_a italic_l italic_N = 2∗ Schur indices,” JHEP 01 (2023) 029, arXiv:2208.01426 [hep-th].
- R. Arai and Y. Imamura, “Finite N𝑁Nitalic_N Corrections to the Superconformal Index of S-fold Theories,” PTEP 2019 no. 8, (2019) 083B04, arXiv:1904.09776 [hep-th].
- D. Gaiotto and J. H. Lee, “The Giant Graviton Expansion,” arXiv:2109.02545 [hep-th].
- J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, “An Index for 4 dimensional super conformal theories,” Commun. Math. Phys. 275 (2007) 209–254, arXiv:hep-th/0510251 [hep-th].
- M. Dewar and M. R. Murty, “An asymptotic formula for the coefficients of j(z)𝑗𝑧j(z)italic_j ( italic_z ),” Int. J. Number Theory 9 no. 3, (2013) 641–652. https://doi.org/10.1142/S1793042112501539.
- G.-N. Han and H. Xiong, “Some useful theorems for asymptotic formulas and their applications to skew plane partitions and cylindric partitions,” Adv. in Appl. Math. 96 (2018) 18–38. https://doi.org/10.1016/j.aam.2017.12.007.
- H. Hayashi, T. Nosaka, and T. Okazaki, “Asymptotic degeneracies of M2-brane SCFTs,” arXiv:2307.02901 [hep-th].
- R. Arai, S. Fujiwara, Y. Imamura, and T. Mori, “Schur index of the ¥calN=4¥𝑐𝑎𝑙𝑁4{\textyen calN}=4¥ italic_c italic_a italic_l italic_N = 4 U(N)𝑈𝑁U(N)italic_U ( italic_N ) supersymmetric Yang-Mills theory via the AdS/CFT correspondence,” Phys. Rev. D 101 no. 8, (2020) 086017, arXiv:2001.11667 [hep-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.