High fidelity distribution of triggered polarization-entangled telecom photons via a 36km intra-city fiber network
Abstract: Fiber-based distribution of triggered, entangled, single-photon pairs is a key requirement for the future development of terrestrial quantum networks. In this context, semiconductor quantum dots (QDs) are promising candidates for deterministic sources of on-demand polarization-entangled photon pairs. So far, the best QD polarization-entangled-pair sources emit in the near-infrared wavelength regime, where the transmission distance in deployed fibers is limited. Here, to be compatible with existing fiber network infrastructures, bi-directional polarization-conserving quantum frequency conversion (QFC) is employed to convert the QD emission from \unit[780]{nm} to telecom wavelengths. We show the preservation of polarization entanglement after QFC (fidelity to Bell state $F_{\phi+, conv}=0.972\pm0.003$) of the biexciton transition. As a step towards real-world applicability, high entanglement fidelities ($F_{\phi+, loop}=0.945\pm0.005$) after the propagation of one photon of the entangled pair along a \unit[35.8]{km} field installed standard single mode fiber link are reported. Furthermore, we successfully demonstrate a second polarization-conversing QFC step back to \unit[780]{nm} preserving entanglement ($F_{\phi+, back}=0.903\pm0.005$). This further prepares the way for interfacing quantum light to various quantum memories.
- J.-L. Liu, X.-Y. Luo, Y. Yu, et al., “A multinode quantum network over a metropolitan area,” \JournalTitlearXiv 2309.00221 (2023).
- G. Vallone, D. Bacco, D. Dequal, et al., “Experimental Satellite Quantum Communications,” \JournalTitlePhys. Rev. Lett. 115, 040502 (2015).
- R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, et al., “Entanglement-based quantum communication over 144 km,” \JournalTitleNat. Phys. 3, 481–486 (2007).
- M. Sasaki, M. Fujiwara, H. Ishizuka, et al., “Field test of quantum key distribution in the Tokyo QKD Network,” \JournalTitleOpt. Express 19, 10387 (2011).
- P. van Loock, W. Alt, C. Becher, et al., “Extending Quantum Links: Modules for Fiber- and Memory-Based Quantum Repeaters,” \JournalTitleAdv. Quantum Technol. 3, 1–48 (2020).
- F. Olbrich, J. Höschele, M. Müller, et al., “Polarization-entangled photons from an InGaAs-based quantum dot emitting in the telecom C-band,” \JournalTitleAppl. Phys. Lett. 111, 133106 (2017).
- K. D. Zeuner, K. D. Jöns, L. Schweickert, et al., “On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots,” \JournalTitleACS Photonics 8, 2337–2344 (2021).
- M. Anderson, T. Müller, J. Huwer, et al., “Quantum teleportation using highly coherent emission from telecom C-band quantum dots,” \JournalTitlenpj Quantum Inf. 6, 14 (2020).
- S. F. C. da Silva, G. Undeutsch, B. Lehner, et al., “GaAs quantum dots grown by droplet etching epitaxy as quantum light sources,” \JournalTitleAppl. Phys. Lett. 119, 120502 (2021).
- C. Hopfmann, W. Nie, N. L. Sharma, et al., “Maximally entangled and gigahertz-clocked on-demand photon pair source,” \JournalTitlePhys. Rev. B 103, 075413 (2021).
- D. Huber, M. Reindl, S. F. Covre da Silva, et al., “Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand,” \JournalTitlePhys. Rev. Lett. 121, 033902 (2018).
- M. Pennacchietti, B. Cunard, S. Nahar, et al., “Oscillating photonic Bell state from a semiconductor quantum dot for quantum key distribution,” \JournalTitleCommun. Phys. 7, 62 (2024).
- S. Zaske, A. Lenhard, C. A. Keßler, et al., “Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter,” \JournalTitlePhys. Rev. Lett. 109, 147404 (2012).
- S. Ates, I. Agha, A. Gulinatti, et al., “Two-Photon Interference Using Background-Free Quantum Frequency Conversion of Single Photons Emitted by an InAs Quantum Dot,” \JournalTitlePhys. Rev. Lett. 109, 147405 (2012).
- C. L. Morrison, R. G. Pousa, F. Graffitti, et al., “Single-emitter quantum key distribution over 175 km of fibre with optimised finite key rates,” \JournalTitleNat. Commun. 14, 3573 (2023).
- B. Kambs, J. Kettler, M. Bock, et al., “Low-noise quantum frequency down-conversion of indistinguishable photons,” \JournalTitleOpt. Express 24, 22250 (2016).
- L. Yu, C. M. Natarajan, T. Horikiri, et al., “Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits,” \JournalTitleNat. Commun. 6, 8955 (2015).
- R. Ikuta, H. Kato, Y. Kusaka, et al., “High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors,” \JournalTitlePhys. Rev. A 87, 010301 (2013).
- M. Bock, P. Eich, S. Kucera, et al., “High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion,” \JournalTitleNat. Commun. 9, 1998 (2018).
- T. van Leent, M. Bock, F. Fertig, et al., “Entangling single atoms over 33 km telecom fibre,” \JournalTitleNature 607, 69–73 (2022).
- E. Arenskötter, T. Bauer, S. Kucera, et al., “Telecom quantum photonic interface for a 40Ca+ single-ion quantum memory,” \JournalTitlenpj Quantum Inf. 9, 34 (2023).
- J. H. Weber, B. Kambs, J. Kettler, et al., “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” \JournalTitleNat. Nanotechnol. 14, 23–26 (2019).
- A. Stolk, K. van der Enden, M.-C. Roehsner, et al., “Telecom-Band Quantum Interference of Frequency-Converted Photons from Remote Detuned NV Centers,” \JournalTitlePRX Quantum 3, 020359 (2022).
- C. M. Knaut, A. Suleymanzade, Y.-C. Wei, et al., “Entanglement of nanophotonic quantum memory nodes in a telecom network,” \JournalTitleNature 629, 573–578 (2024).
- Y. Shi, S. Moe Thar, H. S. Poh, et al., “Stable polarization entanglement based quantum key distribution over a deployed metropolitan fiber,” \JournalTitleAppl. Phys. Lett. 117, 124002 (2020).
- T.-Y. Chen, X. Jiang, S.-B. Tang, et al., “Implementation of a 46-node quantum metropolitan area network,” \JournalTitlenpj Quantum Inf. 7, 134 (2021).
- S. P. Neumann, A. Buchner, L. Bulla, et al., “Continuous entanglement distribution over a transnational 248 km fiber link,” \JournalTitleNat. Commun. 13, 6134 (2022).
- M. Businger, L. Nicolas, T. S. Mejia, et al., “Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5,” \JournalTitleNat. Commun. 13, 6438 (2022).
- D. Ribezzo, M. Zahidy, I. Vagniluca, et al., “Deploying an Inter-European Quantum Network,” \JournalTitleAdv. Quantum Technol. 6, 1–8 (2023).
- Y. Pelet, G. Sauder, M. Cohen, et al., “Operational entanglement-based quantum key distribution over 50 km of field-deployed optical fibers,” \JournalTitlePhys. Rev. Appl. 20, 044006 (2023).
- J. Yang, Z. Jiang, F. Benthin, et al., “High-rate intercity quantum key distribution with a semiconductor single-photon source,” \JournalTitlearXiv 2308.15922 (2023).
- M. Zahidy, M. T. Mikkelsen, R. Müller, et al., “Quantum key distribution using deterministic single-photon sources over a field-installed fibre link,” \JournalTitlenpj Quantum Inf. 10, 2 (2024).
- C. Schimpf, M. Reindl, D. Huber, et al., “Quantum cryptography with highly entangled photons from semiconductor quantum dots,” \JournalTitleSci. Adv. 7, eabe8905 (2021).
- F. Basso Basset, M. Valeri, E. Roccia, et al., “Quantum key distribution with entangled photons generated on demand by a quantum dot,” \JournalTitleSci. Adv. 7, 1–7 (2021).
- Z.-H. Xiang, J. Huwer, R. M. Stevenson, et al., “Long-term transmission of entangled photons from a single quantum dot over deployed fiber,” \JournalTitleSci. Rep. 9, 4111 (2019).
- L. Zaporski, N. Shofer, J. H. Bodey, et al., “Ideal refocusing of an optically active spin qubit under strong hyperfine interactions,” \JournalTitleNat. Nanotechnol. 18, 257–263 (2023).
- K. Heshami, D. G. England, P. C. Humphreys, et al., “Quantum memories: emerging applications and recent advances,” \JournalTitleJ. Mod. Opt. 63, 2005–2028 (2016).
- J. Neuwirth, F. Basso Basset, M. B. Rota, et al., “Quantum dot technology for quantum repeaters: from entangled photon generation toward the integration with quantum memories,” \JournalTitleMater. Quantum Technol. 1, 043001 (2021).
- R. Finkelstein, E. Poem, O. Michel, et al., “Fast, noise-free memory for photon synchronization at room temperature,” \JournalTitleSci. Adv. 4, eaap8598 (2018).
- K. T. Kaczmarek, P. M. Ledingham, B. Brecht, et al., “High-speed noise-free optical quantum memory,” \JournalTitlePhys. Rev. A 97, 042316 (2018).
- N. Akopian, N. H. Lindner, E. Poem, et al., “Entangled Photon Pairs from Semiconductor Quantum Dots,” \JournalTitlePhys. Rev. Lett. 96, 130501 (2006).
- R. J. Young, R. M. Stevenson, P. Atkinson, et al., “Improved fidelity of triggered entangled photons from single quantum dots,” \JournalTitleNew J. Phys. 8, 29–29 (2006).
- R. Hafenbrak, S. M. Ulrich, P. Michler, et al., “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” \JournalTitleNew J. Phys. 9, 315–315 (2007).
- H. Jayakumar, A. Predojević, T. Huber, et al., “Deterministic Photon Pairs and Coherent Optical Control of a Single Quantum Dot,” \JournalTitlePhys. Rev. Lett. 110, 135505 (2013).
- M. Müller, S. Bounouar, K. D. Jöns, et al., “On-demand generation of indistinguishable polarization-entangled photon pairs,” \JournalTitleNat. Photonics 8, 224–228 (2014).
- A. J. Hudson, R. M. Stevenson, A. J. Bennett, et al., “Coherence of an Entangled Exciton-Photon State,” \JournalTitlePhys. Rev. Lett. 99, 266802 (2007).
- R. Winik, D. Cogan, Y. Don, et al., “On-demand source of maximally entangled photon pairs using the biexciton-exciton radiative cascade,” \JournalTitlePhys. Rev. B 95, 235435 (2017).
- T. Müller, J. Skiba-Szymanska, A. B. Krysa, et al., “A quantum light-emitting diode for the standard telecom window around 1,550 nm,” \JournalTitleNat. Commun. 9, 862 (2018).
- S. Stufler, P. Machnikowski, P. Ester, et al., “Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot,” \JournalTitlePhys. Rev. B 73, 125304 (2006).
- J. Altepeter, E. Jeffrey, and P. Kwiat, “Photonic State Tomography,” in Adv. At. Mol. Opt. Phys., vol. 52 (2005), pp. 105–159.
- P. S. Kuo, J. S. Pelc, C. Langrock, and M. M. Fejer, “Using Temperature to Reduce Noise in Quantum Frequency Conversion,” in 2018 Conf. Lasers Electro-Optics, CLEO 2018 - Proc., vol. 43 (Institute of Electrical and Electronics Engineers Inc., 2018), pp. 2034–2037.
- D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” \JournalTitlePhys. Rev. A 64, 052312 (2001).
- E. Waks, C. Santori, and Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” \JournalTitlePhys. Rev. A 66, 042315 (2002).
- M. Vyvlecka, L. Jehle, C. Nawrath, et al., “Robust excitation of C-band quantum dots for quantum communication,” \JournalTitleAppl. Phys. Lett. 123, 174001 (2023).
- T. Lettner, S. Gyger, K. D. Zeuner, et al., “Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm,” \JournalTitleNano Lett. 21, 10501–10506 (2021).
- M. Wentland, S. Malik, A. Fognini, et al., “Implementation of a universal fine-structure eraser for quantum dots,” in Photonics Quantum 2023, vol. PC12633 D. F. Figer and M. Reimer, eds. (SPIE, 2023), p. 38.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.