Papers
Topics
Authors
Recent
2000 character limit reached

Efficient recursive encoders for quantum Reed-Muller codes towards Fault tolerance (2405.14549v1)

Published 23 May 2024 in quant-ph

Abstract: Transversal gates are logical gate operations on encoded quantum information that are efficient in gate count and depth, and are designed to minimize error propagation. Efficient encoding circuits for quantum codes that admit transversal gates are thus crucial to reduce noise and realize useful quantum computers. The class of punctured Quantum Reed-Muller codes admit transversal gates. We construct resource efficient recursive encoders for the class of quantum codes constructed from Reed-Muller and punctured Reed-Muller codes. These encoders on $n$ qubits have circuit depth of $O(\log n)$ and lower gate counts compared to previous works. The number of CNOT gates in the encoder across bi-partitions of the qubits is found to be equal to the entanglement entropy across these partitions, demonstrating that the encoder is optimal in terms of CNOT gates across these partitions. Finally, connecting these ideas, we explicitly show that entanglement can be extracted from QRM codewords.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.