Coherence-mixedness trade-offs (2405.14337v1)
Abstract: Quantum coherence constitutes a foundational characteristic of quantum mechanics and is integral to emerging quantum resource theories. However, quantum coherence is severely restricted by environmental noise in general quantum processing, indicated by the loss of information of a quantum system. Such processing can be described by the trade-offs between the coherence and the mixedness. Based on the $l_2$ norm coherence, conditional von Neumann entropy and Wigner-Yanase skew information, we derive basis-independent constraints on the attainable quantum coherence imposed by the mixedness of a quantum state, which generalize the prior basis-dependent relations, provide fundamental insights into the latent coherence resources present within arbitrary quantum systems that undergo decoherence and quantify the inherent limits on extractable coherence imposed by environmental noise.
- M. Horodecki and J. Oppenheim, Nat. Commun. 4, 2059 (2013).
- P. Skrzypczyk, A. J. Short, and S. Popescu, Nat. Commun. 5, 4185 (2014).
- J. Åberg, Phys. Rev. Lett. 113, 150402 (2014).
- S. Lloyd, J. Phys. Conf. Ser. 302, 012037 (2011).
- H. Fröhlich, Int. J. Quantum Chem. 2, 641 (1968).
- T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014).
- D. Girolami, Phys. Rev. Lett. 113, 170401 (2014).
- Z. Xi and S. Yuwen, Phys. Rev. A 99, 022340 (2019).
- Z.-X. Jin and S.-M. Fei, Phys. Rev. A 97, 062342 (2018).
- A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404 (2016).
- C. Xiong, A. Kumar, and J. Wu, Phys. Rev. A 98, 032324 (2018).
- C.-s. Yu, Phys. Rev. A 95, 042337 (2017).
- H. D. Zeh, Found. Phys. 1, 69 (1970).
- L. Sun, Y.-H. Tao, and S.-M. Fei, Laser Physics 33, 015204 (2022a).
- S. Cheng and M. J. W. Hall, Phys. Rev. A 92, 042101 (2015).
- L. Sun, Y.-H. Tao, and S.-M. Fei, Laser Phys. 33, 015204 (2022b).
- A. E. Rastegin, Phys. Rev. A 93, 032136 (2016).
- S. Luo and Y. Sun, Phys. Lett. A 383, 2869 (2019).
- S. Luo and Y. Sun, Phys. Rev. A 96, 022136 (2017a).
- S. Luo and Y. Sun, Phys. Rev. A 96, 022130 (2017b).
- E. P. Wigner and M. M. Yanase, Proc. Nat. Acad. Sci. 49, 910 (1963).
- G. Karpat, B. Çakmak, and F. F. Fanchini, Phys. Rev. B 90, 104431 (2014).
- R. F. Werner, Phys. Rev. A 40, 4277 (1989).
- R. Jozsa, D. Robb, and W. K. Wootters, Phys. Rev. A 49, 668 (1994).
- C.-s. Yu, S.-r. Yang, and B.-q. Guo, Quantum Inf. Process. 15, 3773 (2016).
- N. A. Peters, T.-C. Wei, and P. G. Kwiat, Phys. Rev. A 70, 052309 (2004).
- S. Dürr, Phys. Rev. A 64, 042113 (2001).
- S. Fu and S. Luo, Commun. Theor. Phys. 74, 035103 (2022).
- Q.-H. Zhang and S.-M. Fei, Phys. Rev. A 108, 012211 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.