Papers
Topics
Authors
Recent
2000 character limit reached

Towards Comprehensive Post Safety Alignment of Large Language Models via Safety Patching

Published 22 May 2024 in cs.CL | (2405.13820v2)

Abstract: Safety alignment of LLMs has been gaining increasing attention. However, current safety-aligned LLMs suffer from the fragile and imbalanced safety mechanisms, which can still be induced to generate unsafe responses, exhibit over-safety by rejecting safe user inputs, and fail to preserve general utility after safety alignment. To this end, we propose a novel post safety alignment (PSA) method to address these inherent and emerging safety challenges, including safety enhancement, over-safety mitigation, and utility preservation. In specific, we introduce \textsc{SafePatching}, a novel framework for comprehensive PSA, where two distinct safety patches are developed on the harmful data to enhance safety and mitigate over-safety concerns, and then seamlessly integrated into the target LLM backbone without compromising its utility. Extensive experiments on four representative aligned LLMs, including LLaMA-2/3, Gemma and Mistral, show that \textsc{SafePatching} achieves a more comprehensive PSA than baseline methods, further optimizing the balance between being helpful and harmless in current aligned LLMs. Also, \textsc{SafePatching} demonstrates its superiority in continual PSA scenarios.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.