Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Scalable Bayesian inference for heat kernel Gaussian processes on manifolds (2405.13342v1)

Published 22 May 2024 in stat.ME, math.ST, and stat.TH

Abstract: We develop scalable manifold learning methods and theory, motivated by the problem of estimating manifold of fMRI activation in the Human Connectome Project (HCP). We propose the Fast Graph Laplacian Estimation for Heat Kernel Gaussian Processes (FLGP) in the natural exponential family model. FLGP handles large sample sizes $ n $, preserves the intrinsic geometry of data, and significantly reduces computational complexity from $ \mathcal{O}(n3) $ to $ \mathcal{O}(n) $ via a novel reduced-rank approximation of the graph Laplacian's transition matrix and truncated Singular Value Decomposition for eigenpair computation. Our numerical experiments demonstrate FLGP's scalability and improved accuracy for manifold learning from large-scale complex data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube