Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Scalable Gaussian Process Computations Using Hierarchical Matrices (1808.03215v2)

Published 9 Aug 2018 in stat.CO, math.NA, and math.OC

Abstract: We present a kernel-independent method that applies hierarchical matrices to the problem of maximum likelihood estimation for Gaussian processes. The proposed approximation provides natural and scalable stochastic estimators for its gradient and Hessian, as well as the expected Fisher information matrix, that are computable in quasilinear $O(n \log2 n)$ complexity for a large range of models. To accomplish this, we (i) choose a specific hierarchical approximation for covariance matrices that enables the computation of their exact derivatives and (ii) use a stabilized form of the Hutchinson stochastic trace estimator. Since both the observed and expected information matrices can be computed in quasilinear complexity, covariance matrices for MLEs can also be estimated efficiently. After discussing the associated mathematics, we demonstrate the scalability of the method, discuss details of its implementation, and validate that the resulting MLEs and confidence intervals based on the inverse Fisher information matrix faithfully approach those obtained by the exact likelihood.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.