Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

$\mathcal{K}$-Lorentzian Polynomials (2405.12973v1)

Published 21 May 2024 in math.AG

Abstract: Lorentzian polynomials are a fascinating class of real polynomials with many applications. Their definition is specific to the nonnegative orthant. Following recent work, we examine Lorentzian polynomials on proper convex cones. For a self-dual cone $\mathcal{K}$ we find a connection between $\mathcal{K}$-Lorentzian polynomials and $\mathcal{K}$-positive linear maps, which were studied in the context of the generalized Perron-Frobenius theorem. We find that as the cone $\mathcal{K}$ varies, even the set of quadratic $\mathcal{K}$-Lorentzian polynomials can be difficult to understand algorithmically. We also show that, just as in the case of the nonnegative orthant, $\mathcal{K}$-Lorentzian and $\mathcal{K}$-completely log-concave polynomials coincide.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.