Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Cycles in spherical Deligne complexes and application to $K(π,1)$-conjecture for Artin groups (2405.12068v3)

Published 20 May 2024 in math.GR, math.GT, and math.MG

Abstract: We introduce a method of finding large non-positively curved subcomplexes in certain spherical Deligne complexes, which is effective for studying fillings of certain 6-cycles in spherical Deligne complexes. As applications, we show the $K(\pi,1)$-conjecture holds for all 3-dimensional hyperbolic type Artin groups, except one single example; and the conjecture holds for all quasi-Lann\'er hyperbolic type Artin groups up to dimension 4. In higher dimension, we show the $K(\pi,1)$-conjecture for Artin groups whose Coxeter diagrams are complete bipartite (edge labels can be arbitrary), answering a question of J. McCammond.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. Daniel Allcock. Braid pictures for artin groups. Transactions of the American Mathematical Society, 354(9):3455–3474, 2002.
  2. Daniel Allcock. Completions, branched covers, Artin groups, and singularity theory. Duke Math. J., 162(14):2645–2689, 2013.
  3. Joseph A Altobelli. The word problem for Artin groups of FC type. Journal of Pure and Applied Algebra, 129(1):1–22, 1998.
  4. EM Andreev. Intersection of plane boundaries of a polytope with acute angles. Mathematical notes of the Academy of Sciences of the USSR, 8:761–764, 1970.
  5. Artin groups and infinite coxeter groups. Inventiones mathematicae, 72(2):201–220, 1983.
  6. Stability conditions for contraction algebras. In Forum of Mathematics, Sigma, volume 10, page e73. Cambridge University Press, 2022.
  7. W. Ballmann and S. Buyalo. Nonpositively curved metrics on 2-polyhedra. Math. Z., 222(1):97–134, 1996.
  8. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
  9. Braids, posets and orthoschemes. Algebr. Geom. Topol., 10(4):2277–2314, 2010.
  10. Nicolas Bourbaki. Lie groups and lie algebras. chapters 4–6. translated from the 1968 french original by andrew pressley. elements of mathematics, 2002.
  11. Brian H Bowditch. Notes on locally cat (1) spaces. Geometric group theory (Columbus, OH, 1992), 3:1–48, 1995.
  12. Parabolic subgroups inside parabolic subgroups of artin groups. Proceedings of the American Mathematical Society, 151(04):1519–1526, 2023.
  13. Egbert Brieskorn. Singular elements of semi-simple algebraic groups. In Actes du Congres International des Mathématiciens (Nice, 1970), volume 2, pages 279–284, 1970.
  14. Egbert Brieskorn. Sur les groupes de tresses [d’après vi arnol’d]. In Séminaire Bourbaki vol. 1971/72 Exposés 400–417, pages 21–44. Springer, 2006.
  15. Tom Bridgeland. Stability conditions and kleinian singularities. International Mathematics Research Notices, 2009(21):4142–4157, 2009.
  16. Helly groups. arXiv preprint arXiv:2002.06895, 2020.
  17. Weakly modular graphs and nonpositive curvature. arXiv preprint arXiv:1409.3892. To appear in Mem. Amer. Math. Soc., 2014.
  18. The K⁢(π,1)𝐾𝜋1K(\pi,1)italic_K ( italic_π , 1 )-problem for hyperplane complements associated to infinite reflection groups. J. Amer. Math. Soc., 8(3):597–627, 1995.
  19. Ruth Charney. Geodesic automation and growth functions for Artin groups of finite type. Math. Ann., 301(2):307–324, 1995.
  20. Ruth Charney. The deligne complex for the four-strand braid group. Transactions of the American Mathematical Society, 356(10):3881–3897, 2004.
  21. Victor Chepoi. Graphs of some cat (0) complexes. Advances in Applied Mathematics, 24(2):125–179, 2000.
  22. Parabolic subgroups of large-type artin groups. arXiv preprint arXiv:2012.02693, 2020.
  23. Convexity of parabolic subgroups in artin groups. arXiv preprint arXiv:1401.7634, 2014.
  24. John Crisp. Symmetrical subgroups of artin groups. Advances in Mathematics, 152(1):159–177, 2000.
  25. John Crisp. Automorphisms and abstract commensurators of 2–dimensional artin groups. Geometry & Topology, 9(3):1381–1441, 2005.
  26. Pierre Deligne. Les immeubles des groupes de tresses généralisés. Inventiones mathematicae, 17(4):273–302, 1972.
  27. Fusion-equivariant stability conditions and morita duality. arXiv preprint arXiv:2311.06857, 2023.
  28. Convex geodesic bicombings and hyperbolicity. Geometriae dedicata, 177(1):367–384, 2015.
  29. Dual structures on coxeter and artin groups of rank three. arXiv preprint arXiv:2206.14518, 2022.
  30. Gated sets in metric spaces. Aequationes mathematicae, 34:112–120, 1987.
  31. Curvature testing in 3-dimensional metric polyhedral complexes. Experimental Mathematics, 11(1):143–158, 2002.
  32. CAT (0) is an algorithmic property. Geometriae Dedicata, 107:25–46, 2004.
  33. The K (π𝜋\piitalic_π, 1) conjecture for a class of Artin groups. Commentarii Mathematici Helvetici, 85(2):409–415, 2010.
  34. Michael Falk. K(π𝜋\piitalic_π, 1) arrangements. Topology, 34(1):141–154, 1995.
  35. R. Fox and L. Neuwirth. The braid groups. Math. Scand., 10:119–126, 1962.
  36. Alexander Goldman. The K(π,1)𝜋1(\pi,1)( italic_π , 1 ) conjecture and acylindrical hyperbolicity for relatively extra-large artin groups. arXiv preprint arXiv:2211.16391, 2022.
  37. Katherine Goldman. CAT(0) and cubulated shephard groups. arXiv preprint arXiv:2310.10883, 2023.
  38. Basic questions on Artin-Tits groups. In Configuration spaces, volume 14 of CRM Series, pages 299–311. Ed. Norm., Pisa, 2012.
  39. K(π𝜋\piitalic_π, 1) and word problems for infinite type artin–tits groups, and applications to virtual braid groups. Mathematische Zeitschrift, 272(3):1339–1364, 2012.
  40. Thomas Haettel. Lattices, injective metrics and the K⁢(π,1)𝐾𝜋1{K}(\pi,1)italic_K ( italic_π , 1 ) conjecture. arXiv preprint arXiv:2109.07891, 2021.
  41. Thomas Haettel. A link condition for simplicial complexes, and cub spaces. arXiv preprint arXiv:2211.07857, 2022.
  42. Edmund Xian Chen Heng. Categorification and dynamics in generalised braid groups. PhD thesis, The Australian National University (Australia), 2022.
  43. Edmund Heng. Introduction to stability conditions and its relation to the K(π,1)𝜋1(\pi,1)( italic_π , 1 ) conjecture for artin groups. arXiv preprint arXiv:2404.11562, 2024.
  44. New Garside structures and applications to Artin groups. arXiv preprint arXiv:2305.11622, 2023.
  45. Hiroshi Hirai. A nonpositive curvature property of modular semilattices. Geometriae Dedicata, 214(1):427–463, 2021.
  46. Helly meets Garside and Artin. Inventiones mathematicae, 225:395–426, 2021.
  47. Jingyin Huang. Labeled four cycles and the K(π𝜋\piitalic_π,1)-conjecture for Artin groups. arXiv preprint arXiv:2305.16847, 2023.
  48. Jingyin Huang. On spherical Deligne complexes of type Dnsubscript𝐷𝑛{D}_{n}italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. arXiv preprint, 2024.
  49. Akishi Ikeda. Stability conditions for preprojective algebras and root systems of kac-moody lie algebras. arXiv preprint arXiv:1402.1392, 2014.
  50. The K(π𝜋\piitalic_π, 1)-conjecture implies the center conjecture for artin groups. Journal of Algebra, 615:455–463, 2023.
  51. Arye Juhász. Relatively extra-large artin groups. Groups, Geometry, and Dynamics, 12(4):1343–1370, 2018.
  52. Arye Juhász. A class of artin groups in which the k (π𝜋\piitalic_π, 1) conjecture holds. Journal of Pure and Applied Algebra, page 107401, 2023.
  53. Folke Lannér. On complexes with transitive groups of automorphisms. (No Title), 1950.
  54. Folke Lannér. On complexes with transitive groups of automorphisms. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], 11:71, 1950.
  55. Urs Lang. Injective hulls of certain discrete metric spaces and groups. Journal of Topology and Analysis, 5(03):297–331, 2013.
  56. The fine structure of kontsevich-zorich strata for genus 3. arXiv preprint arXiv:1208.4279, 2012.
  57. Combinatorial group theory. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition.
  58. Hideya Matsumoto. Générateurs et relations des groupes de weyl généralisés. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 258(13):3419, 1964.
  59. Jon McCammond. Constructing non-positively curved spaces and groups. Geometric and cohomological methods in group theory, LMS Lecture Note Series, 358:162–224, 2009.
  60. Jon McCammond. The mysterious geometry of artin groups. Winter Braids Lecture Notes, 4:1–30, 2017.
  61. Artin groups of euclidean type. Inventiones mathematicae, 210(1):231–282, 2017.
  62. Fans and ladders in small cancellation theory. Proceedings of the London Mathematical Society, 84(3):599–644, 2002.
  63. Arrangements of hyperplanes, volume 300. Springer Science & Business Media, 2013.
  64. Luis Paris. K⁢(π,1)𝐾𝜋1{K}(\pi,1)italic_K ( italic_π , 1 ) conjecture for artin groups. In Annales de la Faculté des sciences de Toulouse: Mathématiques, volume 23, pages 361–415, 2014.
  65. Proof of the k (π𝜋\piitalic_π, 1) conjecture for affine artin groups. Inventiones mathematicae, 224(2):487–572, 2021.
  66. Yu Qiu and Jon Woolf. Contractible stability spaces and faithful braid group actions. Geometry & Topology, 22(6):3701–3760, 2018.
  67. Yu Qiu and Xiaoting Zhang. Fusion-stable structures on triangulation categories. arXiv preprint arXiv:2310.02917, 2023.
  68. Mario Salvetti. Topology of the complement of real hyperplanes in cn. Invent. math, 88(3):603–618, 1987.
  69. Jean-Pierre Serre. Trees. Springer Science & Business Media, 2002.
  70. Harm van der Lek. The homotopy type of complex hyperplane complements. 1983.
  71. Richard CH Webb. Contractible, hyperbolic but non-CAT (0) complexes. Geometric and Functional Analysis, 30:1439–1463, 2020.
  72. Jeff Weeks. Kaleidotile. Software available at https://www.geometrygames.org/KaleidoTile/index.html.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: