Lattice physics approaches for neural networks
Abstract: Modern neuroscience has evolved into a frontier field that draws on numerous disciplines, resulting in the flourishing of novel conceptual frames primarily inspired by physics and complex systems science. Contributing in this direction, we recently introduced a mathematical framework to describe the spatiotemporal interactions of systems of neurons using lattice field theory, the reference paradigm for theoretical particle physics. In this note, we provide a concise summary of the basics of the theory, aiming to be intuitive to the interdisciplinary neuroscience community. We contextualize our methods, illustrating how to readily connect the parameters of our formulation to experimental variables using well-known renormalization procedures. This synopsis yields the key concepts needed to describe neural networks using lattice physics. Such classes of methods are attention-worthy in an era of blistering improvements in numerical computations, as they can facilitate relating the observation of neural activity to generative models underpinned by physical principles.
- Angotzi, G. N. et al. SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings. \JournalTitleBiosensors and Bioelectronics 126, 355–364, 10.1016/J.BIOS.2018.10.032 (2019).
- Steinmetz, N. A. et al. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. \JournalTitleScience (New York, N.Y.) 372, 10.1126/SCIENCE.ABF4588 (2021).
- Bullard, A. Feasibility of Using the Utah Array for Long-Term Fully Implantable Neuroprosthesis Systems. Tech. Rep. (2019).
- Leber, M. et al. Long term performance of porous platinum coated neural electrodes. \JournalTitleBiomedical Microdevices 19, 10.1007/s10544-017-0201-4 (2017).
- Ye, Z. et al. Ultra-high density electrodes improve detection, yield, and cell type identification in neuronal recordings. \JournalTitlebioRxiv 2023.08.23.554527, 10.1101/2023.08.23.554527 (2024).
- A quantitative description of membrane current and its application to conduction and excitation in nerve. \JournalTitleThe Journal of Physiology 117, 500–544, 10.1113/JPHYSIOL.1952.SP004764 (1952).
- Beurle, R. L. Properties of a mass of cells capable of regenerating pulses. \JournalTitlePhilosophical transactions of the Royal Society of London. Series B, Biological sciences 240, 55–94, 10.1098/RSTB.1956.0012 (1956).
- Freeman, W. J. Waves, Pulses, and the Theory of Neural Masses. \JournalTitleProgress in Theoretical Biology 2, 1–10 (1972).
- Amari, S. I. Characteristics of Random Nets of Analog Neuron-Like Elements. \JournalTitleIEEE Transactions on Systems, Man and Cybernetics 2, 643–657, 10.1109/TSMC.1972.4309193 (1972).
- Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons. \JournalTitleBiophysical Journal 12, 1–24, 10.1016/S0006-3495(72)86068-5 (1972).
- A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. \JournalTitleKybernetik 13, 55–80, 10.1007/BF00288786/METRICS (1973).
- Fischer, B. A neuron field theory: Mathemalical approaches to the problem of large numbers of interacting nerve cells. \JournalTitleBulletin of Mathematical Biology 35, 345–357, 10.1016/S0092-8240(73)80034-5 (1973).
- Model of brain rhythmic activity. The alpha-rhythm of the thalamus. \JournalTitleKybernetik 15, 27–37, 10.1007/BF00270757 (1974).
- Amari, S. i. Dynamics of pattern formation in lateral-inhibition type neural fields. \JournalTitleBiological Cybernetics 27, 77–87, 10.1007/BF00337259/METRICS (1977).
- Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. \JournalTitleProceedings of the National Academy of Sciences of the United States of America 79, 2554, 10.1073/PNAS.79.8.2554 (1982).
- Storing Infinite Numbers of Patterns in a Spin-Glass Model of Neural Networks. \JournalTitlePhysical Review Letters 55, 1530, 10.1103/PhysRevLett.55.1530 (1985).
- Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. \JournalTitleCerebral Cortex 7, 237–252, 10.1093/CERCOR/7.3.237 (1997).
- Spin glass model of learning by selection (Darwinism/categorizaton/Hebb synapse/ultrametricity/frustradon). Tech. Rep. (1986).
- Treves, A. Are spin-glass effects relevant to understanding realistic auto-associative networks? \JournalTitleJournal of Physics A: Mathematical and General 24, 2645, 10.1088/0305-4470/24/11/029 (1991).
- Abeles, M. et al. Cortical activity flips among quasi-stationary states. \JournalTitleProceedings of the National Academy of Sciences 92, 8616–8620, 10.1073/PNAS.92.19.8616 (1995).
- Field-theoretic approach to fluctuation effects in neural networks. \JournalTitlePhysical Review E - Statistical, Nonlinear, and Soft Matter Physics 75, 051919, 10.1103/PHYSREVE.75.051919/FIGURES/9/MEDIUM (2007).
- Heterogeneous connections induce oscillations in large-scale networks. \JournalTitlePhysical Review Letters 109, 018702, 10.1103/PHYSREVLETT.109.018702/FIGURES/3/MEDIUM (2012).
- Beyond mean field theory: statistical field theory for neural networks. \JournalTitleJournal of Statistical Mechanics: Theory and Experiment 2013, P03003, 10.1088/1742-5468/2013/03/P03003 (2013).
- Bardella, G. et al. Neural activity in quarks language: Lattice Field Theory for a network of real neurons. \JournalTitlearXiv 10.48550/arXiv.2310.09178 (2024).
- Wilson, K. G. Confinement of quarks. \JournalTitlePhysical Review D 10, 2445, 10.1103/PhysRevD.10.2445 (1974).
- Lee, T. D. Can time be a discrete dynamical variable? \JournalTitlePhysics Letters B 122, 217–220, 10.1016/0370-2693(83)90687-1 (1983).
- Lee, T. D. Difference equations and conservation laws. \JournalTitleJournal of Statistical Physics 46, 843–860, 10.1007/BF01011145/METRICS (1987).
- Parisi, G. Statistical Field Theory (Addison-Wesley, Redwood City,CA, USA,, 1989).
- Wiese, U.-J. An Introduction to Lattice Field Theory. Tech. Rep. 11 (2009).
- Gupta, S. Introduction to Lattice Field Theory. Tech. Rep., Asian Schoolon Lattice Field Theory TIFR, Mumbai,India (2011).
- Formulation of lattice gauge theories for quantum simulations. \JournalTitlePhysical Review D - Particles, Fields, Gravitation and Cosmology 91, 054506, 10.1103/PHYSREVD.91.054506/FIGURES/1/MEDIUM (2015).
- Parotto, P. Parametrized Equation of State for QCD from 3D Ising Model. \JournalTitleProceedings of Science 311, 036, 10.22323/1.311.0036 (2018).
- Halverson, J. Building Quantum Field Theories Out of Neurons. \JournalTitlearXiv (2021).
- Tiberi, L. et al. Gell-Mann-Low Criticality in Neural Networks. \JournalTitlePhysical Review Letters 128, 168301, 10.1103/PHYSREVLETT.128.168301/FIGURES/1/MEDIUM (2022).
- Quantum field theory of binary alternatives. \JournalTitleInternational Journal of Theoretical Physics 31, 1929–1959, 10.1007/BF00671965/METRICS (1992).
- Deutsch, D. Qubit Field Theory. \JournalTitlearXiv (2004).
- Singh, H. Exploring Quantum Field Theories with Qubit Lattice Models. Ph.D. thesis (2020).
- Franchini, S. Replica Symmetry Breaking without replicas. \JournalTitleAnnals of Physics 450, 10.1016/j.aop.2023.169220 (2023).
- Friston, K. The free-energy principle: a unified brain theory? \JournalTitleNature Reviews Neuroscience 2010 11:2 11, 127–138, 10.1038/nrn2787 (2010).
- Rendering neuronal state equations compatible with the principle of stationary action. \JournalTitleJournal of Mathematical Neuroscience 11, 1–15, 10.1186/S13408-021-00108-0/FIGURES/2 (2021).
- Friston, K. J. et al. Parcels and particles: Markov blankets in the brain. \JournalTitleNetwork Neuroscience 5, 211–251, 10.1162/NETN{_}A{_}00175 (2021).
- Dimensionality reduction for large-scale neural recordings. \JournalTitleNature Neuroscience 2014 17:11 17, 1500–1509, 10.1038/nn.3776 (2014).
- Kobak, D. et al. Demixed principal component analysis of neural population data. \JournalTitleeLife 5, 10.7554/ELIFE.10989 (2016).
- Murray, J. D. et al. Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. \JournalTitleProceedings of the National Academy of Sciences of the United States of America 114, 394–399, 10.1073/PNAS.1619449114/SUPPL{_}FILE/PNAS.201619449SI.PDF (2017).
- Neural Manifolds for the Control of Movement. \JournalTitleNeuron 94, 978–984, 10.1016/J.NEURON.2017.05.025 (2017).
- Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. \JournalTitleCurrent Opinion in Neurobiology 70, 113–120, 10.1016/J.CONB.2021.08.002 (2021).
- Computation Through Neural Population Dynamics. \JournalTitleAnnual review of neuroscience 43, 249–275, 10.1146/ANNUREV-NEURO-092619-094115 (2020).
- Pani, P. et al. Neuronal population dynamics during motor plan cancellation in nonhuman primates. \JournalTitleProceedings of the National Academy of Sciences of the United States of America 119, e2122395119, 10.1073/pnas.2122395119 (2022).
- Lebedev, M. A. et al. Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings of rotation dynamics. \JournalTitleScientific Reports 2019 9:1 9, 1–14, 10.1038/s41598-019-54760-4 (2019).
- Shinn, M. Phantom oscillations in principal component analysis. \JournalTitleProceedings of the National Academy of Sciences of the United States of America 120, e2311420120, 10.1073/PNAS.2311420120/SUPPL{_}FILE/PNAS.2311420120.SAPP.PDF (2023).
- Neuronal travelling waves explain rotational dynamics in experimental datasets and modelling. \JournalTitleScientific Reports 2024 14:1 14, 1–15, 10.1038/s41598-024-53907-2 (2024).
- A unifying perspective on neural manifolds and circuits for cognition. \JournalTitleNature Reviews Neuroscience 2023 24:6 24, 363–377, 10.1038/s41583-023-00693-x (2023).
- Attractor dynamics reflect decision confidence in macaque prefrontal cortex. \JournalTitleNature Neuroscience 2023 26:11 26, 1970–1980, 10.1038/s41593-023-01445-x (2023).
- The dynamics and geometry of choice in premotor cortex. \JournalTitlebioRxiv 2023.07.22.550183, 10.1101/2023.07.22.550183 (2023).
- Context-dependent computation by recurrent dynamics in prefrontal cortex. \JournalTitleNature 2013 503:7474 503, 78–84, 10.1038/nature12742 (2013).
- Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. \JournalTitleNature neuroscience 17, 431–439, 10.1038/NN.3645 (2014).
- Sussillo, D. Neural circuits as computational dynamical systems. \JournalTitleCurrent Opinion in Neurobiology 25, 156–163, 10.1016/J.CONB.2014.01.008 (2014).
- A neural network that finds a naturalistic solution for the production of muscle activity. \JournalTitleNature neuroscience 18, 1025–1033, 10.1038/NN.4042 (2015).
- Recurrent Network Models of Sequence Generation and Memory. \JournalTitleNeuron 90, 128–142, 10.1016/J.NEURON.2016.02.009 (2016).
- Finkelstein, A. et al. Attractor dynamics gate cortical information flow during decision-making. \JournalTitleNature Neuroscience 2021 24:6 24, 843–850, 10.1038/s41593-021-00840-6 (2021).
- Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks. \JournalTitleNeuron 99, 609–623, 10.1016/J.NEURON.2018.07.003 (2018).
- Probing the Relationship Between Latent Linear Dynamical Systems and Low-Rank Recurrent Neural Network Models. \JournalTitleNeural Computation 34, 1871–1892, 10.1162/NECO{_}A{_}01522 (2022).
- Engineering recurrent neural networks from task-relevant manifolds and dynamics. \JournalTitlePLOS Computational Biology 16, e1008128, 10.1371/JOURNAL.PCBI.1008128 (2020).
- Wang, X. J. Probabilistic Decision Making by Slow Reverberation in Cortical Circuits. \JournalTitleNeuron 36, 955–968, 10.1016/S0896-6273(02)01092-9 (2002).
- The Complexity of Dynamics in Small Neural Circuits. \JournalTitlePLOS Computational Biology 12, e1004992, 10.1371/JOURNAL.PCBI.1004992 (2016).
- Brinkman, B. A. et al. Metastable dynamics of neural circuits and networks. \JournalTitleApplied Physics Reviews 9, 11313, 10.1063/5.0062603/2835433 (2022).
- The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. \JournalTitleNature Neuroscience 2019 22:9 22, 1512–1520, 10.1038/s41593-019-0460-x (2019).
- Two views on the cognitive brain. \JournalTitleNature Reviews Neuroscience 2021 22:6 22, 359–371, 10.1038/s41583-021-00448-6 (2021).
- The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields. \JournalTitlePLOS Computational Biology 4, e1000092, 10.1371/JOURNAL.PCBI.1000092 (2008).
- Field theory for biophysical neural networks. \JournalTitleProceedings of Science Part F130500, 23–28 (2014).
- Neural Field Models: A mathematical overview and unifying framework. \JournalTitleMathematical Neuroscience and Applications Volume 2, 10.46298/mna.7284 (2022).
- Metastable states in asymmetrically diluted Hopfield networks. \JournalTitleJournal of Physics A: Mathematical and General 21, 3155, 10.1088/0305-4470/21/14/016 (1988).
- Weak pairwise correlations imply strongly correlated network states in a neural population. \JournalTitleNature 440, 1007–1012, 10.1038/nature04701 (2006).
- Yan, H. et al. Nonequilibrium landscape theory of neural networks. \JournalTitleProceedings of the National Academy of Sciences of the United States of America 110, E4185–E4194, 10.1073/PNAS.1310692110/ASSET/F2BB66FB-6D67-43B9-9320-C1599D81382B/ASSETS/GRAPHIC/PNAS.1310692110I93.GIF (2013).
- Wang, J. Landscape and flux theory of non-equilibrium dynamical systems with application to biology. \JournalTitleAdvances in Physics 64, 1–137, 10.1080/00018732.2015.1037068 (2015).
- Non-equilibrium landscape and flux reveal how the central amygdala circuit gates passive and active defensive responses. \JournalTitleJournal of the Royal Society Interface 16, 10.1098/RSIF.2018.0756 (2019).
- Non-equilibrium landscape and flux reveal the stability-flexibility-energy tradeoff in working memory. \JournalTitlePLOS Computational Biology 16, e1008209, 10.1371/JOURNAL.PCBI.1008209 (2020).
- Cortical state dynamics and selective attention define the spatial pattern of correlated variability in neocortex. \JournalTitleNature Communications 2022 13:1 13, 1–15, 10.1038/s41467-021-27724-4 (2022).
- Learning non-stationary Langevin dynamics from stochastic observations of latent trajectories. \JournalTitleNature Communications 2021 12:1 12, 1–9, 10.1038/s41467-021-26202-1 (2021).
- Spatial and temporal correlations in neural networks with structured connectivity. \JournalTitlePhysical Review Research 5, 013005, 10.1103/PHYSREVRESEARCH.5.013005/FIGURES/21/MEDIUM (2023).
- Input space bifurcation manifolds of recurrent neural networks. \JournalTitleNeurocomputing 64, 25–38, 10.1016/J.NEUCOM.2004.11.030 (2005).
- Optimized brute-force algorithms for the bifurcation analysis of a binary neural network model. \JournalTitlePhysical Review E 99, 012316, 10.1103/PHYSREVE.99.012316/FIGURES/6/MEDIUM (2019).
- Classical mechanics (Pearson Education, 2002).
- Stochastic quantisation of Yang-Mills-Higgs in 3D. \JournalTitlearXiv (2022).
- Gauge fields on a lattice. I. General outlook. \JournalTitlePhysical Review D 10, 3376, 10.1103/PhysRevD.10.3376 (1974).
- Faccioli, P. Lecture Course: Statistical Field Theory - YouTube (2020).
- Lattice quantum electrodynamics in (3+1)-dimensions at finite density with tensor networks. \JournalTitleNature Communications 12, 10.1038/s41467-021-23646-3 (2021).
- Statistical Field Theory and Networks of Spiking Neurons. \JournalTitlearXiv (2020).
- Hooft, G. t. The Cellular Automaton Interpretation of Quantum Mechanics (2014).
- Discreteness of area and volume in quantum gravity. \JournalTitleNuclear Physics B 442, 593–619, 10.1016/0550-3213(95)00150-Q (1995).
- The Helmholtz conditions for the difference equations systems. \JournalTitleBalkan Journal of Geometry and its Applications (BJGA) 1, 21–30 (1996).
- Helmholtz’s inverse problem of the discrete calculus of variations. \JournalTitleJournal of Difference Equations and Applications 19, 1417–1436, 10.1080/10236198.2012.754435 (2013).
- Gubbiotti, G. On the inverse problem of the discrete calculus of variations. \JournalTitleJournal of Physics A: Mathematical and Theoretical 52, 305203, 10.1088/1751-8121/AB2919 (2019).
- Gubbiotti, G. Lagrangians and integrability for additive fourth-order difference equations. \JournalTitleThe European Physical Journal Plus 2020 135:10 135, 1–30, 10.1140/EPJP/S13360-020-00858-Y (2020).
- Zur Formulierung quantisierter Feldtheorien. \JournalTitleIl Nuovo Cimento 1, 205–225, 10.1007/BF02731765/METRICS (1955).
- The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding. \JournalTitleJournal of Neuroscience 18, 3870–3896, 10.1523/JNEUROSCI.18-10-03870.1998 (1998).
- Correlations and the encoding of information in the nervous system. \JournalTitleProceedings of the Royal Society B: Biological Sciences 266, 1001, 10.1098/RSPB.1999.0736 (1999).
- Neural correlations, population coding and computation. \JournalTitleNature Reviews Neuroscience 2006 7:5 7, 358–366, 10.1038/nrn1888 (2006).
- Measuring and interpreting neuronal correlations. \JournalTitleNature Neuroscience 2011 14:7 14, 811–819, 10.1038/nn.2842 (2011).
- Kadanoff, L. P. Relating theories via renormalization. \JournalTitleStudies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44, 22–39, 10.1016/J.SHPSB.2012.05.002 (2013).
- Real-space renormalization in statistical mechanics. \JournalTitleReviews of Modern Physics 86, 647–667, 10.1103/RevModPhys.86.647 (2014).
- Wilson, K. G. The renormalization group and critical phenomena. \JournalTitleReviews of Modern Physics 55, 583, 10.1103/RevModPhys.55.583 (1983).
- Wilson Theory for Spin Systems on a Triangular Lattice. \JournalTitlePhysical Review Letters 31, 1411, 10.1103/PhysRevLett.31.1411 (1973).
- Wilson theory for 2-dimensional Ising spin systems. \JournalTitlePhysica 71, 17–40, 10.1016/0031-8914(74)90044-5 (1974).
- Spin glass theory and beyond (1987).
- The P(ϕitalic-ϕ\phiitalic_ϕ) 2 Euclidean Quantum Field Theory as Classical Statistical Mechanics. \JournalTitleThe Annals of Mathematics 101, 111, 10.2307/1970988 (1975).
- Stochastic quantization. \JournalTitlePhysics Reports 152, 227–398, 10.1016/0370-1573(87)90144-X (1987).
- Pertubation theory without gauge fixing. \JournalTitleScientia Sinica 24, 483–, 10.1360/YA1981-24-4-483 (1981).
- Brown, L. M. Feynman’s thesis: A new approach to quantum theory (World Scientific Publishing Co., 2005).
- Dynamics of neuronal firing correlation: modulation of "effective connectivity". \JournalTitlehttps://doi.org/10.1152/jn.1989.61.5.900 61, 10.1152/JN.1989.61.5.900 (1989).
- Swendsen, R. H. Monte Carlo Calculation of Renormalized Coupling Parameters. \JournalTitlePhysical Review Letters 52, 1165, 10.1103/PhysRevLett.52.1165 (1984).
- Small-correlation expansions for the inverse Ising problem. \JournalTitleJournal of Physics A: Mathematical and Theoretical 42, 055001, 10.1088/1751-8113/42/5/055001 (2009).
- Inverse ising inference using all the data. \JournalTitlePhysical Review Letters 108, 090201, 10.1103/PHYSREVLETT.108.090201/FIGURES/2/MEDIUM (2012).
- Inverse statistical problems: from the inverse Ising problem to data science. \JournalTitlehttp://dx.doi.org/10.1080/00018732.2017.1341604 66, 197–261, 10.1080/00018732.2017.1341604 (2017).
- Variational mean-field algorithm for efficient inference in large systems of stochastic differential equations. \JournalTitlePhysical Review E - Statistical, Nonlinear, and Soft Matter Physics 91, 012148, 10.1103/PHYSREVE.91.012148/FIGURES/10/MEDIUM (2015).
- Friston, K. J. Functional and effective connectivity: a review. \JournalTitleBrain connectivity 1, 13–36, 10.1089/BRAIN.2011.0008 (2011).
- Sokolov, A. A. et al. Asymmetric high-order anatomical brain connectivity sculpts effective connectivity. \JournalTitleNetwork Neuroscience 4, 871–890, 10.1162/NETN{_}A{_}00150 (2020).
- Dynamics of multistable states during ongoing and evoked cortical activity. \JournalTitleJournal of Neuroscience 35, 8214–8231, 10.1523/JNEUROSCI.4819-14.2015 (2015).
- Comparing dynamic causal models. \JournalTitleNeuroImage 22, 1157–1172, 10.1016/J.NEUROIMAGE.2004.03.026 (2004).
- Dynamic causal modelling. \JournalTitleNeuroImage 19, 1273–1302, 10.1016/S1053-8119(03)00202-7 (2003).
- Prando, G. et al. Sparse DCM for whole-brain effective connectivity from resting-state fMRI data. \JournalTitleNeuroImage 208, 116367, 10.1016/J.NEUROIMAGE.2019.116367 (2020).
- Benozzo, D. et al. Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data. \JournalTitleNetwork Neuroscience 1–42, 10.1162/NETN{_}A{_}00381 (2024).
- Spin glass models for a network of real neurons. \JournalTitlearXiv (2009).
- Tkačik, G. et al. The simplest maximum entropy model for collective behavior in a neural network. \JournalTitleJournal of Statistical Mechanics: Theory and Experiment 2013, 10.1088/1742-5468/2013/03/P03011 (2013).
- Successes and failures of simple statistical physics models for a network of real neurons. \JournalTitlearXiv (2021).
- Tang, A. et al. A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. \JournalTitleJournal of Neuroscience 28, 505–518, 10.1523/JNEUROSCI.3359-07.2008 (2008).
- Gonçalves, P. J. et al. Training deep neural density estimators to identify mechanistic models of neural dynamics. \JournalTitleeLife 9, 1–46, 10.7554/ELIFE.56261 (2020).
- Statistical Physics through the Lens of Real-Space Mutual Information. \JournalTitlePhysical Review Letters 127, 240603, 10.1103/PHYSREVLETT.127.240603/FIGURES/2/MEDIUM (2021).
- Merger, C. et al. Learning Interacting Theories from Data. \JournalTitlePhysical Review X 13, 041033, 10.1103/PHYSREVX.13.041033/FIGURES/16/MEDIUM (2023).
- Explainable Deep Learning: A Field Guide for the Uninitiated. \JournalTitleJournal of Artificial Intelligence Research 73, 329–396, 10.1613/JAIR.1.13200 (2022).
- Wells, J. D. Effective Theories and Elementary Particle Masses. \JournalTitleSpringerBriefs in Physics Part F875, 43–60, 10.1007/978-3-642-34892-1{_}4/TABLES/1 (2012).
- Laplacian renormalization group for heterogeneous networks. \JournalTitleNature Physics 2023 19:3 19, 445–450, 10.1038/s41567-022-01866-8 (2023).
- Mountcastle, V. B. The columnar organization of the neocortex. \JournalTitleBrain 120, 701–722, 10.1093/BRAIN/120.4.701 (1997).
- Jones, E. G. Microcolumns in the cerebral cortex. \JournalTitleProceedings of the National Academy of Sciences of the United States of America 97, 5019–5021, 10.1073/PNAS.97.10.5019/ASSET/3DA8C745-11C8-48BA-B49F-00678B6F22A0/ASSETS/GRAPHIC/PQ1001216003.JPEG (2000).
- Morphological differences between minicolumns in human and nonhuman primate cortex. \JournalTitleAmerican Journal of Physical Anthropology 115, 361–371, 10.1002/AJPA.1092 (2001).
- The minicolumn hypothesis in neuroscience. \JournalTitleBrain 125, 935–951, 10.1093/BRAIN/AWF110 (2002).
- Cruz, L. et al. A statistically based density map method for identification and quantification of regional differences in microcolumnarity in the monkey brain. \JournalTitleJournal of Neuroscience Methods 141, 321–332, 10.1016/J.JNEUMETH.2004.09.005 (2005).
- Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. \JournalTitleBrain structure & function 212, 3–17, 10.1007/S00429-007-0144-2 (2007).
- The cortical column: a structure without a function. \JournalTitlePhilosophical Transactions of the Royal Society B: Biological Sciences 360, 837–862, 10.1098/RSTB.2005.1623 (2005).
- Bastos, A. M. et al. Canonical Microcircuits for Predictive Coding. \JournalTitleNeuron 76, 695–711, 10.1016/J.NEURON.2012.10.038 (2012).
- Renormalization group approach to spin glass systems. \JournalTitleEuropean Physical Journal B 21, 605–609, 10.1007/S100510170171/METRICS (2001).
- Franchini, S. A simplified Parisi ansatz. \JournalTitleCommunications in Theoretical Physics 73, 055601, 10.1088/1572-9494/ABDE32 (2021).
- Angelini, M. C. Real-Space Renormalization group for spin glasses. \JournalTitlearXiv (2023).
- On the microscopic foundation of scaling laws. \JournalTitlePhysics Letters A 29, 322–323, 10.1016/0375-9601(69)90148-0 (1969).
- Structural aspects of biological cybernetics: Valentino Braitenberg, neuroanatomy, and brain function. \JournalTitleBiological cybernetics 108, 517–525, 10.1007/S00422-014-0630-6 (2014).
- The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. \JournalTitleNature reviews. Neuroscience 13, 407–420, 10.1038/NRN3241 (2012).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.