Papers
Topics
Authors
Recent
2000 character limit reached

Characterization of the ELM-free Negative Triangularity Edge on DIII-D (2405.11082v1)

Published 17 May 2024 in physics.plasm-ph

Abstract: Tokamak plasmas with strong negative triangularity (NT) shaping typically exhibit fundamentally different edge behavior than conventional L-mode or H-mode plasmas. Over the entire DIII-D database, plasmas with sufficiently negative triangularity are found to be inherently free of edge localized modes (ELMs), even at injected powers well above the predicted L-H power threshold. A critical triangularly ($\delta_\mathrm{crit}\simeq-0.15$), consistent with inherently ELM-free operation is identified, beyond which access to the second stability region for infinite-$n$ ballooning modes closes on DIII-D. It is also possible to close access to this region, and thereby prevent an H-mode transition, at weaker average triangularities ($\delta\lesssim\delta_\mathrm{crit}$) provided that at least one of the two x-points is still sufficiently negative. Enhanced low field side magnetic fluctuations during ELM-free operation are consistent with additional turbulence limiting the NT edge gradient. Despite the reduced upper limit on the pressure gradient imposed by ballooning stability, NT plasmas are able to support small pedestals and are typically characterized by an enhancement of edge pressure gradients beyond those found in traditional L-mode plasmas. Further, the pressure gradient inside of this small pedestal is unusually steep, allowing access to high core performance that is competitive with other ELM-free regimes previously achieved on DIII-D. Since ELM-free operation in NT is linked directly to the magnetic geometry, NT fusion pilot plants are predicted to maintain advantageous edge conditions even in burning plasma regimes, potentially eliminating reactor core-integration issues caused by ELMs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. F Wagner. A quarter-century of h-mode studies. 49(12):B1–B33. ISSN 0741-3335, 1361-6587. doi: 10.1088/0741-3335/49/12B/S01. URL https://iopscience.iop.org/article/10.1088/0741-3335/49/12B/S01.
  2. A. W. Leonard. Edge-localized-modes in tokamaks. 21(90501). doi: 10.1063/1.4918359. URL https://doi.org/10.1063/1.4894742.
  3. Pedestal stability comparison and ITER pedestal prediction. 49:085035, a. ISSN 00295515. doi: 10.1088/0029-5515/49/8/085035. URL http://dx.doi.org/10.1088/0029-5515/49/8/085035. ISBN: 0029-5515.
  4. Hajime Urano. Pedestal structure in h-mode plasmas. 54:116001. ISSN 17414326. doi: 10.1088/0029-5515/54/11/116001. URL http://dx.doi.org/10.1088/0029-5515/54/11/116001. Publisher: Institute of Physics Publishing.
  5. Setting the h-mode pedestal structure: variations of particle source location using gas puff and pellet fueling. 60:046003, a. ISSN 0029-5515. doi: 10.1088/1741-4326/ab5e65. URL https://doi.org/10.1088/1741-4326/ab5e65.
  6. A brief history of negative triangularity tokamak plasmas. 5(1):6, a. ISSN 2367-3192. doi: 10.1007/s41614-021-00054-0. URL https://doi.org/10.1007/s41614-021-00054-0.
  7. Energy confinement and MHD activity in shaped TCV plasmas with localized electron cyclotron heating. 39(11):1807. ISSN 0029-5515. doi: 10.1088/0029-5515/39/11Y/321. URL https://doi.org/10.1088/0029-5515/39/11Y/321.
  8. Impact of plasma triangularity and collisionality on electron heat transport in TCV l-mode plasmas. 47(7):510–516. ISSN 00295515. doi: 10.1088/0029-5515/47/7/002. URL https://doi.org/10.1088/0029-5515/47/7/002.
  9. Pedestal properties of h-modes with negative triangularity using the EPED-CH model. 59(10). ISSN 13616587. doi: 10.1088/1361-6587/aa7ac0. URL https://doi.org/10.1088/1361-6587/aa7ac0. Publisher: Institute of Physics Publishing.
  10. Achievement of reactor-relevant performance in negative triangularity shape in the DIII-d tokamak. 122:115001. ISSN 10797114. doi: 10.1103/PhysRevLett.122.115001. URL https://doi.org/10.1103/PhysRevLett.122.115001.
  11. H-mode grade confinement in l-mode edge plasmas at negative triangularity on DIII-d. 26:042515, b. ISSN 10897674. doi: 10.1063/1.5091802. URL https://doi.org/10.1063/1.5091802.
  12. Diverted negative triangularity plasmas on DIII-d: the benefit of high confinement without the liability of an edge pedestal. 61:116010, c. ISSN 0029-5515, 1741-4326. doi: 10.1088/1741-4326/ac1f60. URL https://doi.org/10.1088/1741-4326/ac1f60.
  13. Ballooning instability preventing the h-mode access in plasmas with negative triangularity shape on the DIII-d tokamak. 63(105006). doi: 10.1088/1361. URL https://doi.org/10.1088/1361-6587/ac1ea4.
  14. Prospects for h-mode inhibition in negative triangularity tokamak reactor plasmas. 62:096020, b. ISSN 0029-5515, 1741-4326. doi: 10.1088/1741-4326/ac8064. URL https://doi.org/10.1088/1741-4326/ac8064.
  15. Enhanced confinement in diverted negative-triangularity l-mode plasmas in TCV. 64(14004). ISSN 0741-3335, 1361-6587. doi: 10.1088/1361-6587/ac3fec. URL https://doi.org/10.1088/1361-6587/ac3fec.
  16. Robust avoidance of edge-localized modes alongside gradient formation in the negative triangularity tokamak edge. 131:195101, c. URL https://doi.org/10.1103/PhysRevLett.131.195101.
  17. Surface heat loads on the ITER divertor vertical targets. 57(46025). ISSN 17414326. doi: 10.1088/1741-4326/aa5e2a. URL https://doi.org/10.1088/1741-4326/aa5e2a.
  18. C. Paz-Soldan. Plasma performance and operational space without ELMs in DIII-d. 63(83001). ISSN 13616587. doi: 10.1088/1361-6587/ac048b. URL https://doi.org/10.1088/1361-6587/ac048b.
  19. Prospects of core–edge integrated no-ELM and small-ELM scenarios for future fusion devices. 34(101308). ISSN 23521791. doi: 10.1016/j.nme.2022.101308. URL https://doi.org/10.1016/j.nme.2022.101308.
  20. The negative triangularity tokamak: Stability limits and prospects as a fusion energy system. 55:063013. ISSN 17414326. doi: 10.1088/0029-5515/55/6/063013. URL https://doi.org/10.1088/0029-5515/55/6/063013.
  21. L-mode-edge negative triangularity tokamak reactor. 59:056017. ISSN 17414326. doi: 10.1088/1741-4326/ab076d. URL https://doi.org/10.1088/1741-4326/ab076d.
  22. Radiative pulsed l-mode operation in ARC-class reactors. 62:126036. ISSN 0029-5515, 1741-4326. doi: 10.1088/1741-4326/ac95ac. URL https://doi.org/10.1088/1741-4326/ac95ac.
  23. To dee or not to dee: costs and benefits of altering the triangularity of a steady-state DEMO-like reactor. 62:076006. URL https://doi.org/10.1088/1741-4326/ac62f6.
  24. G Rutherford and et al. MANTA: A negative-triangularity NASEM-compliant fusion pilot plant. MANTA: A Negative-Triangularity NASEM-Compliant Fusion Pilot Plant:In This Issue.
  25. Assessment of vertical stability for negative triangularity pilot plants. 66:065018. URL https://iopscience.iop.org/article/10.1088/1361-6587/ad4175.
  26. M A Miller and et al. Power handling solutions for a negative triangularity radiative l-mode pilot plant. Power Handling Solutions for a Negative Triangularity Radiative L-mode Pilot Plant:In This Issue.
  27. J.L. Luxon. A design retrospective of the DIII-d tokamak. 42(5):614. ISSN 00295515. doi: 10.1088/0029-5515/42/5/313. URL https://doi.org/10.1088/0029-5515/42/5/313.
  28. K. E. Thome and et al. Overview of results from the 2023 DIII-d negative triangularity campaign. Overview of Results from the 2023 DIII-D Negative Triangularity Campaign:In This Issue.
  29. Vertical control of DIII-d discharges with strong negative triangularity. 65:044002, d. ISSN 0741-3335, 1361-6587. doi: 10.1088/1361-6587/acbe65. URL https://doi.org/10.1088/1361-6587/acbe65.
  30. Simultaneous access to high normalized current, pressure, density, and confinement in strongly-shaped diverted negative triangularity plasmas. page in review.
  31. High performance power handling in the absence of an h-mode edge in negative triangularity DIII-d plasmas. page Submitted.
  32. Thomson scattering diagnostic upgrade on DIII-d. 81:10D525. ISSN 00346748. doi: 10.1063/1.3495759. URL https://doi.org/10.1063/1.3495759.
  33. Initial results of the high resolution edge thomson scattering upgrade at DIII-d. 83:10E343. ISSN 00346748. doi: 10.1063/1.4738656. URL http://dx.doi.org/10.1063/1.4738656.
  34. Improved edge charge exchange recombination spectroscopy in DIII-d. 87:11E512. doi: 10.1063/1.4958915. URL https://doi.org/10.1063/1.4958915.
  35. The filterscope. 74:2068. ISSN 00346748. doi: 10.1063/1.1537038. URL https://doi.org/10.1063/1.1537038.
  36. H Zohm. Edge localized modes (ELMs). 38(2):105–128. ISSN 0741-3335, 1361-6587. doi: 10.1088/0741-3335/38/2/001. URL https://doi.org/10.1088/0741-3335/38/2/001.
  37. Investigating profile stiffness and critical gradients in shaped TCV discharges using local gyrokinetic simulations of turbulent transport. 57(54010), a. ISSN 0741-3335, 1361-6587. doi: 10.1088/0741-3335/57/5/054010. URL https://iopscience.iop.org/article/10.1088/0741-3335/57/5/054010.
  38. Understanding the negative triangularity ELM trigger and ELM free state on DIII-d with ECE-imaging. 30:062505. ISSN 1070-664X, 1089-7674. doi: 10.1063/5.0144711. URL https://doi.org/10.1063/5.0144711.
  39. Computational analysis of ion orbital loss in diverted positive- and negative-triangularity tokamaks. 27(1):012505. ISSN 1070-664X, 1089-7674. doi: 10.1063/1.5131157. URL http://aip.scitation.org/doi/10.1063/1.5131157.
  40. Zonal flow screening in negative triangularity tokamaks. 62(126073). ISSN 0029-5515, 1741-4326. doi: 10.1088/1741-4326/ac945e. URL https://iopscience.iop.org/article/10.1088/1741-4326/ac945e.
  41. Geometric dependencies of the mean e × b shearing rate in negative triangularity tokamaks. 63:126053. URL https://doi.org/10.1088/1741-4326/ad0605.
  42. G. Kramer and et. al. Full orbit calculations show that the negative triangularity and h-mode plasma edge are equivalent. Full orbit calculations show that the negative triangularity and H-mode plasma edge are equivalent:In This Issue.
  43. Y. R. Martin and T. Takizuka. Power requirement for accessing the h-mode in ITER. 123(12033). ISSN 17426596. doi: 10.1088/1742-6596/123/1/012033. URL https://doi.org/10.1088/1742-6596/123/1/012033.
  44. Optimization of 3d controlled ELM-free state with recovered global confinement for tokamak fusion plasmas. 62:026043. URL https://doi.org/10.1088/1741-4326/ac4369.
  45. NEGATIVE TRIANGULARITY TOKAMAK OPERATION IN TCV. a.
  46. H-mode transitions and limit cycle oscillations from mean field transport equations. 57(1):014025. ISSN 0741-3335, 1361-6587. doi: 10.1088/0741-3335/57/1/014025. URL https://iopscience.iop.org/article/10.1088/0741-3335/57/1/014025.
  47. Time-dependent experimental identification of inter-ELM microtearing modes in the tokamak edge on DIII-d. 61:116083, e. URL https://doi.org/10.1088/1741-4326/ac27ca.
  48. Overview of initial negative triangularity plasma studies on the ASDEX upgrade tokamak. 63:016002. ISSN 0029-5515, 1741-4326. doi: 10.1088/1741-4326/ac8563. URL https://doi.org/10.1088/1741-4326/ac8563.
  49. An analytical model of how the negative triangularity cuts off the access to the second stable region in tokamak plasmas. ISSN 0029-5515, 1741-4326. doi: 10.1088/1741-4326/ad1b94. URL https://iopscience.iop.org/article/10.1088/1741-4326/ad1b94.
  50. Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes. 9:2037–2043, b. ISSN 1070-664X. doi: 10.1063/1.1449463. URL https://doi.org/10.1063/1.1449463.
  51. CAKE: Consistent automatic kinetic equilibrium reconstruction. 163:112163. ISSN 09203796. doi: 10.1016/j.fusengdes.2020.112163. URL https://doi.org/10.1016/j.fusengdes.2020.112163.
  52. ITER Physics Expert Group on Confinement and Transport. Chapter 2: Plasma confinement and transport. 39(2175). URL https://doi.org/10.1088/0029-5515/39/12/302.
  53. First-principles density limit scaling in tokamaks based on edge turbulent transport and implications for ITER. 128(18):185003. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.128.185003. URL https://link.aps.org/doi/10.1103/PhysRevLett.128.185003.
  54. Characterization of density limit in negative triangularity plasmas on DIII-d tokamak. In 65th Annual Meeting of the APS Division of Plasma Physics.
  55. On the non-stiffness of edge transport in l-mode tokamak plasmas. 21(55906), b. ISSN 10897674. doi: 10.1063/1.4876612. URL https://doi.org/10.1063/1.4876612.
  56. I-mode: An h-mode energy confinement regime with l-mode particle transport in alcator c-mod. 50(105005). ISSN 00295515. doi: 10.1088/0029-5515/50/10/105005. URL https://doi.org/10.1088/0029-5515/50/10/105005.
  57. Multi-device studies of pedestal physics and confinement in the i-mode regime. 56(8):086003. ISSN 0029-5515, 1741-4326. doi: 10.1088/0029-5515/56/8/086003. URL https://iopscience.iop.org/article/10.1088/0029-5515/56/8/086003.
  58. A first-principles predictive model of the pedestal height and width: Development, testing and ITER optimization with the EPED model. 51:103016, c. ISSN 00295515. doi: 10.1088/0029-5515/51/10/103016. URL https://doi.org/10.1088/0029-5515/51/10/103016.
  59. The EPED pedestal model and edge localized mode-suppressed regimes: Studies of quiescent h-mode and development of a model for edge localized mode suppression via resonant magnetic perturbations. 19(5):056115, d. ISSN 1070664X. doi: 10.1063/1.3699623. URL https://doi.org/10.1063/1.3699623.
  60. Progress in quantifying the edge physics of the h mode regime in DIII-d. 41:1789, a. doi: 10.1088/0029-5515/41/12/306. URL https://doi.org/10.1088/0029-5515/41/12/306.
  61. Progress towards a predictive model for pedestal height in DIII-d. 49(8):085037, b. ISSN 0029-5515, 1741-4326. doi: 10.1088/0029-5515/49/8/085037. URL https://iopscience.iop.org/article/10.1088/0029-5515/49/8/085037.
  62. The effect of plasma triangularity on turbulent transport: Modeling TCV experiments by linear and non-linear gyrokinetic simulations. 51(5), d. ISSN 07413335. doi: 10.1088/0741-3335/51/5/055016.
  63. Nonlocal effects in negative triangularity TCV plasmas. 63(44001), b. ISSN 13616587. doi: 10.1088/1361-6587/abe39d. Publisher: IOP Publishing Ltd.
  64. First-principle based predictions of the effects of negative triangularity on DTT scenarios. ISSN 0029-5515, 1741-4326. doi: 10.1088/1741-4326/ad2abc. URL https://iopscience.iop.org/article/10.1088/1741-4326/ad2abc.
  65. Overview of ASDEX upgrade results. 39(9).
  66. Identification of plasma-edge-related operational regime boundaries and the effect of edge instability on confinement in ASDEX upgrade. 39(12):2051–2066. ISSN 0741-3335, 1361-6587. doi: 10.1088/0741-3335/39/12/008. URL https://iopscience.iop.org/article/10.1088/0741-3335/39/12/008.
  67. Power requirements for superior h-mode confinement on alcator c-mod: Experiments in support of ITER. 51:083007. ISSN 00295515. doi: 10.1088/0029-5515/51/8/083007. URL http://dx.doi.org/10.1088/0029-5515/51/8/083007.
  68. MHD stability of negative triangularity DIII-d plasmas. 63(86007). ISSN 0029-5515, 1741-4326. doi: 10.1088/1741-4326/acd564. URL https://iopscience.iop.org/article/10.1088/1741-4326/acd564.
  69. T. B. Cote and et al. First observations of edge instabilities in strongly shaped negative triangularly plasmas on DIII-d. First observations of edge instabilities in strongly shaped negative triangularly plasmas on DIII-D:In This Issue.
  70. S. Stewart and et al. Characterization of turbulence properties in negative triangularity DIII-d plasmas. Characterization of Turbulence Properties in Negative Triangularity DIII-D Plasmas:In This Issue.
  71. The beam emission spectroscopy diagnostic on the DIII-d tokamak. 70(1):913–916. ISSN 0034-6748, 1089-7623. doi: 10.1063/1.1149416. URL https://pubs.aip.org/rsi/article/70/1/913/355125/The-beam-emission-spectroscopy-diagnostic-on-the.
  72. Integrated modeling applications for tokamak experiments with OMFIT. 55:083008. ISSN 17414326. doi: 10.1088/0029-5515/55/8/083008. URL http://dx.doi.org/10.1088/0029-5515/55/8/083008.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.