Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A minimal scenario for the origin of non-equilibrium order (2405.10911v3)

Published 17 May 2024 in q-bio.PE, cond-mat.stat-mech, and q-bio.MN

Abstract: Life uses non-equilibrium mechanisms to create ordered structures not attainable at equilibrium; the resulting order is assumed to provide functional benefits that outweigh costs of time and energy needed by these mechanisms. Here, we show that models of DNA replication and self-assembly, when expanded to include known stalling effects, can evolve error correcting mechanisms like kinetic proofreading and dynamic instability through selection for fast replication alone. We abstract these results into a general framework that predicts a counterintuitive ''order through speed'' effect if the distribution of replication times is wide enough. We test our results against recent mutational screens of proofreading polymerases. Our work suggests the intriguing possibility that non-equilibrium order can evolve even before that order is directly functional, with consequences for the evolution of mutation rates, viral capsid assembly, and the origin of life.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. E. Schrödinger, What is Life? The Physical Aspect of the Living Cell, Canto (Cambridge University Press, Cambridge, 1944).
  2. Y. Tu, Proceedings of the National Academy of Sciences 105, 11737 (2008).
  3. P. Mehta and D. J. Schwab, Proceedings of the National Academy of Sciences 109, 17978 (2012).
  4. M. E. Raichle and D. A. Gusnard, Proceedings of the National Academy of Sciences 99, 10237 (2002).
  5. J. V. Neumann and A. W. Burks, Theory of Self-Reproducing Automata (University of Illinois Press, USA, 1966).
  6. J. Ninio, Biochimie 57, 587 (1975a).
  7. J. J. Hopfield, Proceedings of the National Academy of Sciences 71, 4135 (1974a).
  8. H. Qian, J. Phys. Chem. B  (2006).
  9. M. Ehrenberg and C. Blomberg, Biophys. J. 31, 333 (1980).
  10. J. M. Horowitz and J. L. England, Proceedings of the National Academy of Sciences 114, 7565 (2017).
  11. M. Nguyen and S. Vaikuntanathan, Proceedings of the National Academy of Sciences 113, 14231 (2016).
  12. G. Bisker and J. L. England, Proceedings of the National Academy of Sciences 115, E10531 (2018).
  13. R. Marsland and J. L. England, Physical Review E 98, 022411 (2018).
  14. T. Mitchison and M. Kirschner, Nature 312, 237 (1984a).
  15. G. F. Joyce and J. W. Szostak, Cold Spring Harbor Perspectives in Biology 10, a034801 (2018).
  16. L. A. Loeb and T. A. Kunkel, Annual Review of Biochemistry 51, 429 (1982).
  17. J. J. Hopfield, Proceedings of the National Academy of Sciences 71, 4135 (1974b).
  18. J. Ninio, Biochimie 57, 587 (1975b).
  19. P. Sartori and S. Pigolotti, Physical Review Letters 110, 188101 (2013).
  20. F. W. Perrino and L. A. Loeb, Journal of Biological Chemistry 264, 2898 (1989).
  21. S. J. Johnson and L. S. Beese, Cell 116, 803 (2004).
  22. A. A. Johnson and K. A. Johnson, Journal of Biological Chemistry 276, 38097 (2001).
  23. C. G. Evans and E. Winfree, in DNA Computing and Molecular Programming, Vol. 11145, edited by D. Doty and H. Dietz (Springer International Publishing, Cham, 2018) pp. 37–54.
  24. T. Mitchison and M. Kirschner, Nature 312, 237 (1984b).
  25. E. Winfree and R. Bekbolatov, in DNA Computing, Lecture Notes in Computer Science, edited by J. Chen and J. Reif (Springer, Berlin, Heidelberg, 2004) pp. 126–144.
  26. A. Jhaveri, S. Loggia, Y. Qian,  and M. E. Johnson, “Discovering optimal kinetic pathways for self-assembly using automatic differentiation,”  (2023).
  27. T. E. Holy and S. Leibler, Proceedings of the National Academy of Sciences 91, 5682 (1994).
  28. J. D. Perlmutter and M. F. Hagan, Annual Review of Physical Chemistry 66, 217 (2015).
  29. R. Phillips, The Molecular Switch: Signalling and Allostery (Princeton University Press, 2020).
  30. M. R. Evans and S. N. Majumdar, Physical Review Letters 106, 160601 (2011).
  31. I. Eliazar and S. Reuveni, J. Phys. A: Math. Theor. 56, 024002 (2023).
  32. J. Lin and A. Amir, Cell systems 5, 358 (2017).
  33. M. Lynch, Proceedings of the National Academy of Sciences 104, 8597 (2007).
  34. D. J. Jenkins and D. J. Stekel, Journal of Molecular Evolution 71, 128 (2010).
  35. P. E. Boehmer and I. R. Lehman, Annu. Rev. Biochem. 66, 347 (1997).
  36. S. Klinge and J. L. Woolford, Nature Reviews Molecular Cell Biology 20, 116 (2019).
  37. M. Scott and T. Hwa, Nat. Rev. Microbiol. 21, 327 (2023).
  38. C. A. P. Joazeiro, Nat. Rev. Mol. Cell Biol. 20, 368 (2019).
  39. D. S. Tawfik, Current Opinion in Chemical Biology In vivo chemistry • Mechanisms, 21, 73 (2014).
  40. M. Lynch, Trends in Genetics 26, 345 (2010).
  41. M. Lenz and T. A. Witten, Nature Physics 13, 1100 (2017).
  42. G. Müller, Cryst. Res. Technol. 42, 1150 (2007).
  43. C. H. Waddington, Nature 150, 563 (1942).
Citations (3)

Summary

  • The paper demonstrates that selection for rapid replication can unintentionally foster dissipative, order-enhancing mechanisms in self-replicating systems.
  • The authors extend polymerase models to include stalling effects, revealing a trade-off between replication speed and fidelity supported by mutagenesis data.
  • The study proposes that mechanisms akin to Maxwell demons operate in high-dimensional state spaces, reducing error and enhancing structured outcomes.

Non-equilibrium Order in Biological Systems: The Interplay between Self-replication, Speed, and Dissipative Mechanisms

The research conducted by Ravasio et al. investigates the conditions under which non-equilibrium mechanisms capable of creating organized structures can emerge as a consequence of self-replication, rather than through selection for their direct functionality. The authors contend that various non-equilibrium order-creating processes, such as kinetic proofreading in biological replication and dynamic instability in self-assembly, can evolve primarily through selection for fast replication, even when the order does not offer a direct fitness benefit.

Theoretical Framework and Polymerase Kinetics

The paper presents a framework predicting that self-replicative systems tend to amplify dissipative order-enhancing mechanisms, provided the distribution of replication times is sufficiently broad. By expanding models of polymerases to incorporate stalling effects, the authors demonstrate that kinetic proofreading can evolve due to the selection pressure for rapid replication. This supports an alternate scenario where order in biological systems arises unintentionally as a byproduct of adaptive pressures on replication speed rather than through direct selection for order.

In their investigation of polymerase behavior, Ravasio et al. identify a counter-intuitive trade-off between replication speed and fidelity. Through in silico evolutionary experiments, they show that when DNA polymerases are selected for speed, higher fidelity can be achieved spontaneously through increased dissipative activities, such as kinetic proofreading. This phenomenon is attributable to the stalling effect intrinsic to polymerase function, whereby erroneous nucleotide incorporations extend the replication time, thereby favoring mechanisms that reduce these stalls.

Empirical Application and Mutagenesis Data

Within their empirical analysis, the authors reference mutational screens of DNA polymerase variants, providing evidence of speed-fidelity trade-offs in practical settings. Notably, the analysis of a large dataset from polymerase mutagenesis supports the notion that variants exhibiting faster replication rates tend to have lower error rates, corroborating theoretical predictions.

Self-assembly and Non-equilibrium Dynamics

Ravasio et al. extend their model to the self-assembly processes critical in cellular and sub-cellular architecture development, such as ribosomal assembly or viral capsid formation. By integrating a model of dynamic instability akin to microtubule behavior, they emphasize that systems selected for rapid assembly, but not necessarily precision, can evolve to demonstrate increased order and reduced errors.

In simulated evolution scenarios, structures that evolved under constraints of rapid assembly alone showed increased dynamic instability, leading to quicker turnover of misconstructed components. In practice, this translates to higher order and reduced variance in structural assembly outcomes, revealing a pathway by which complexity and error correction in biological systems might arise unselected for direct functionality.

High-dimensional Trajectories and Non-equilibrium Order

A critical insight from the paper is the presentation of a conceptual model where replication processes navigate high-dimensional state spaces. The authors propose that fast replication selects for mechanisms akin to Maxwell demons that irreversibly reset the system to starting conditions, thereby reducing trajectory entropy and facilitating greater order. This mechanism underscores a broader principle seen across various biological contexts: the emergence of order from constraints designed initially to enhance replication efficiency.

Implications for Evolution and Biological Systems

Conclusively, this research suggests that the evolution of non-equilibrium order in biological systems is more accessible than previously assumed and can occur as a secondary consequence of selection pressures on replication dynamics. The insights extend beyond theoretical implications, offering potential applications in understanding mutation rates, enzyme specificity in synthesis, and mechanisms of error reduction in biological systems. Moreover, the framework can inform synthetic biological endeavors aiming to engineer systems with high fidelity and rapid replication without the immediate necessity for artificially constructed order.

Thus, this investigation into the spontaneous emergence of order through selection on replication speed paradigms challenges conventional theories of biological complexity and provides a lens through which the evolution of cellular machinery can be understood.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 8 posts and received 88 likes.