Papers
Topics
Authors
Recent
2000 character limit reached

Neuroscheduling for Remote Estimation (2405.10892v1)

Published 17 May 2024 in eess.SY and cs.SY

Abstract: Many modern distributed systems consist of devices that generate more data than what can be transmitted via a communication link in near real time with high-fidelity. We consider the scheduling problem in which a device has access to multiple data sources, but at any moment, only one of them is revealed in real-time to a remote receiver. Even when the sources are Gaussian, and the fidelity criterion is the mean squared error, the globally optimal data selection strategy is not known. We propose a data-driven methodology to search for the elusive optimal solution using linear function approximation approach called neuroscheduling and establish necessary and sufficient conditions for the optimal scheduler to not over fit training data. Additionally, we present several numerical results that show that the globally optimal scheduler and estimator pair to the Gaussian case are nonlinear.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.