Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Modelling stochastic fluctuations in relativistic kinetic theory (2405.10878v2)

Published 17 May 2024 in nucl-th

Abstract: Using the information current, we develop a Lorentz-covariant framework for modeling equilibrium fluctuations in relativistic kinetic theory in the grand-canonical ensemble. The resulting stochastic theory is proven to be causal and covariantly stable, and its predictions do not depend on the choice of spacetime foliation used to define the grand-canonical probabilities. As expected, in a box containing $N{>}5$ particles, Boltzmann's molecular chaos postulate is broken with (almost exact) probability $N{-1/2}$, leading to a breakdown of the Boltzmann equation in small systems. We also verify that, in ultrarelativistic gases, transient hydrodynamics already accounts for at least 80% of the equilibrium fluctuations of the stress-energy tensor at a given time. Finally, we compute the correlators at non-equal times for two selected collision kernels: That of a chemically active diluted solution, and that of ultrarelativistic scalar particles self-interacting via a quartic potential. For the former, we compute the density-density correlators analytically in real space, and dehydrodynamization of the stochastic theory is proven to occur whenever the mean free path diverges at high energy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. K. Huang, Statistical Mechanics, 2nd ed. (John Wiley & Sons, 1987).
  2. Rémi Joel Hakim, Introduction to Relativistic Statistical Mechanics: Classical and Quantum (World Scientific, 2011).
  3. Wojciech Florkowski, Michal P. Heller,  and Michał Spaliński, “New theories of relativistic hydrodynamics in the LHC era,” Reports on Progress in Physics 81, 046001 (2018), arXiv:1707.02282 [hep-ph] .
  4. Paul Romatschke, “New Developments in Relativistic Viscous Hydrodynamics,” International Journal of Modern Physics E 19, 1–53 (2010), arXiv:0902.3663 [hep-ph] .
  5. Gabriel S. Rocha, Caio V. P. de Brito,  and Gabriel S. Denicol, “Hydrodynamic theories for a system of weakly self-interacting classical ultrarelativistic scalar particles: Microscopic derivations and attractors,” Phys. Rev. D 108, 036017 (2023), arXiv:2306.07423 [nucl-th] .
  6. Gabriel S. Rocha, David Wagner, Gabriel S. Denicol, Jorge Noronha,  and Dirk H. Rischke, “Theories of Relativistic Dissipative Fluid Dynamics,” Entropy 26, 189 (2024a), arXiv:2311.15063 [nucl-th] .
  7. S. R. De Groot, Relativistic Kinetic Theory. Principles and Applications, edited by W. A. Van Leeuwen and C. G. Van Weert (1980).
  8. C. Cercignani, Mathematical methods in kinetic theory (Springer, 1990).
  9. E. T. Jaynes, “Gibbs vs Boltzmann Entropies,” American Journal of Physics 33, 391–398 (1965).
  10. E. M. Sevick, R. Prabhakar, Stephen R. Williams,  and Debra J. Searles, “Fluctuation Theorems,” Annual Review of Physical Chemistry 59, 603–633 (2008), arXiv:0709.3888 [cond-mat.stat-mech] .
  11. L.P. Pitaevskii and E.M. Lifshitz, Physical Kinetics, v. 10 (Elsevier Science, 2012).
  12. Ronald Forrest Fox and George E Uhlenbeck, “Contributions to nonequilibrium thermodynamics. ii. fluctuation theory for the boltzmann equation,” The Physics of Fluids 13, 2881–2890 (1970a).
  13. Mordechai Bixon and Robert Zwanzig, “Boltzmann-Langevin Equation and Hydrodynamic Fluctuations,” Phys. Rev. 187, 267–272 (1969).
  14. Sean Gavin, George Moschelli,  and Christopher Zin, “Boltzmann-Langevin Approach to Pre-equilibrium Correlations in Nuclear Collisions,” Phys. Rev. C 95, 064901 (2017), arXiv:1612.07856 [nucl-th] .
  15. Nahuel Mirón-Granese, Alejandra Kandus,  and Esteban Calzetta, “Nonlinear Fluctuations in Relativistic Causal Fluids,” JHEP 07, 064 (2020), arXiv:2002.08323 [hep-th] .
  16. Lorenzo Gavassino, Marco Antonelli,  and Brynmor Haskell, “Thermodynamic Stability Implies Causality,” Phys. Rev. Lett. 128, 010606 (2022a), arXiv:2105.14621 [gr-qc] .
  17. N. G. van Kampen, “Relativistic thermodynamics of moving systems,” Phys. Rev. 173, 295–301 (1968).
  18. Werner Israel, “Covariant fluid mechanics and thermodynamics: An introduction,” in Relativistic Fluid Dynamics, edited by Angelo M. Anile and Yvonne Choquet-Bruhat (Springer Berlin Heidelberg, Berlin, Heidelberg, 1989) pp. 152–210.
  19. W. Israel, “Thermodynamics of relativistic systems,” Physica A: Statistical Mechanics and its Applications 106, 204 – 214 (1981).
  20. Nicki Mullins, Mauricio Hippert,  and Jorge Noronha, “Stochastic fluctuations in relativistic fluids: causality, stability, and the information current,”   (2023a), arXiv:2306.08635 [nucl-th] .
  21. Nicki Mullins, Mauricio Hippert, Lorenzo Gavassino,  and Jorge Noronha, “Relativistic hydrodynamic fluctuations from an effective action: causality, stability, and the information current,”   (2023b), arXiv:2309.00512 [hep-th] .
  22. Paul Romatschke, “Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions,” Eur. Phys. J. C 76, 352 (2016), arXiv:1512.02641 [hep-th] .
  23. Aleksi Kurkela and Urs Achim Wiedemann, “Analytic structure of nonhydrodynamic modes in kinetic theory,” Eur. Phys. J. C 79, 776 (2019), arXiv:1712.04376 [hep-ph] .
  24. Matej Bajec, Sašo Grozdanov,  and Alexander Soloviev, “Spectra of correlators in the relaxation time approximation of kinetic theory,”   (2024), arXiv:2403.17769 [hep-th] .
  25. Gabriel S. Denicol and Jorge Noronha, “Spectrum of the Boltzmann collision operator for λ𝜆\lambdaitalic_λϕitalic-ϕ\phiitalic_ϕ4 theory in the classical regime,” Phys. Lett. B 850, 138487 (2024), arXiv:2209.10370 [nucl-th] .
  26. Lorenzo Gavassino, “The zeroth law of thermodynamics in special relativity,” Found. Phys. 50, 1554–1586 (2020), arXiv:2005.06396 [gr-qc] .
  27. Rémi Hakim, Introduction to Relativistic Statistical Mechanics: Classical and Quantum (World Scientific, New Jersey, 2011) pp. 1–538.
  28. L. D. Landau and E. M. Lifshitz, Statistical Physics Part I - Volume 5 (Course of Theoretical Physics), 3rd ed. (Butterworth-Heinemann, Oxford, UK, 1980).
  29. Lorenzo Gavassino, “Applying the Gibbs stability criterion to relativistic hydrodynamics,” Class. Quant. Grav. 38, 21LT02 (2021), arXiv:2104.09142 [gr-qc] .
  30. Lorenzo Gavassino, Nicki Mullins,  and Mauricio Hippert, “Consistent inclusion of fluctuations in first-order causal and stable relativistic hydrodynamics,”   (2024), arXiv:2402.06776 [nucl-th] .
  31. Timothy S Olson, “Stability and causality in the israel-stewart energy frame theory,” Annals of Physics 199, 18–36 (1990).
  32. Lorenzo Gavassino, Marco Antonelli,  and Brynmor Haskell, “Symmetric-hyperbolic quasihydrodynamics,” Phys. Rev. D 106, 056010 (2022b), arXiv:2207.14778 [gr-qc] .
  33. G. S. Denicol, H. Niemi, E. Molnar,  and D. H. Rischke, “Derivation of transient relativistic fluid dynamics from the Boltzmann equation,” Phys. Rev. D 85, 114047 (2012), [Erratum: Phys.Rev.D 91, 039902 (2015)], arXiv:1202.4551 [nucl-th] .
  34. David Wagner, Andrea Palermo,  and Victor E. Ambruş, “Inverse-Reynolds-dominance approach to transient fluid dynamics,” Phys. Rev. D 106, 016013 (2022), arXiv:2203.12608 [nucl-th] .
  35. Lorenzo Gavassino, Marco Antonelli,  and Brynmor Haskell, “Symmetric-hyperbolic quasihydrodynamics,” Phys. Rev. D 106, 056010 (2022c), arXiv:2207.14778 [gr-qc] .
  36. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics Part II - Volume 9 (Course of Theoretical Physics) (Butterworth-Heinemann, Oxford, UK, 1980).
  37. Victor E. Ambrus, Etele Molnár,  and Dirk H. Rischke, “Transport coefficients of second-order relativistic fluid dynamics in the relaxation-time approximation,” Phys. Rev. D 106, 076005 (2022), arXiv:2207.05670 [nucl-th] .
  38. David Wagner and Lorenzo Gavassino, “The regime of applicability of Israel-Stewart hydrodynamics,”   (2023), arXiv:2309.14828 [nucl-th] .
  39. Michael E. Peskin and Daniel V. Schroeder, An introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995).
  40. Gabriel S. Rocha, Gabriel S. Denicol,  and Jorge Noronha, “Novel Relaxation Time Approximation to the Relativistic Boltzmann Equation,” Phys. Rev. Lett. 127, 042301 (2021), arXiv:2103.07489 [nucl-th] .
  41. Gabriel S. Rocha, Maurício N. Ferreira, Gabriel S. Denicol,  and Jorge Noronha, “Transport coefficients of quasiparticle models within a new relaxation time approximation of the Boltzmann equation,” Phys. Rev. D 106, 036022 (2022), arXiv:2203.15571 [nucl-th] .
  42. Lorenzo Gavassino, “Infinite Order Hydrodynamics: an Analytical Example,”   (2024a), arXiv:2402.19343 [nucl-th] .
  43. Lorenzo Gavassino, “Gapless non-hydrodynamic modes in relativistic kinetic theory,”   (2024b), arXiv:2404.12327 [nucl-th] .
  44. Gabriel S. Rocha, Isabella Danhoni, Kevin Ingles, Gabriel S. Denicol,  and Jorge Noronha, “Branch-cut in the shear-stress response function of massless λ⁢φ4𝜆superscript𝜑4\lambda\varphi^{4}italic_λ italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT with Boltzmann statistics,”   (2024b), arXiv:2404.04679 [nucl-th] .
  45. Ronald Forrest Fox and George E. Uhlenbeck, “Contributions to non‐equilibrium thermodynamics. i. theory of hydrodynamical fluctuations,” The Physics of Fluids 13, 1893–1902 (1970b), https://aip.scitation.org/doi/pdf/10.1063/1.1693183 .
  46. Lorenzo Gavassino, Marcelo M. Disconzi,  and Jorge Noronha, “Universality Classes of Relativistic Fluid Dynamics I: Foundations,”   (2023a), arXiv:2302.03478 [nucl-th] .
  47. L. Gavassino, M. M. Disconzi,  and J. Noronha, “Universality Classes of Relativistic Fluid Dynamics II: Applications,”   (2023b), arXiv:2302.05332 [nucl-th] .
  48. C. Cercignani and G. M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications (Springer, 2002).
  49. C.S. Wang Chang, On the propagation of sound in monoatomic gases (1952).
  50. DLMF, “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/, Release 1.1.3 of 2021-09-15, f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
  51. G. S. Denicol and D. H. Rischke, Microscopic Foundations of Relativistic Fluid Dynamics (Springer, 2021).
  52. Y Huang and WF McColl, “Analytical inversion of general tridiagonal matrices,” Journal of Physics A: Mathematical and General 30, 7919 (1997).
  53. Jörn Dunkel and Peter Hänggi, “Relativistic Brownian motion,” Phys. Rept. 471, 1–73 (2009), arXiv:0812.1996 [cond-mat.stat-mech] .
  54. Daniel Bancel and Yvonne Choquet-Bruhat, “Existence, uniqueness, and local stability for the Einstein-Maxwell-Boltzman system,” Communications in Mathematical Physics 33, 83–96 (1973).
  55. Tosio Kato, “The cauchy problem for quasi-linear symmetric hyperbolic systems,” Archive for Rational Mechanics and Analysis 58, 181–205 (1975).
  56. Jorge Noronha, Björn Schenke, Chun Shen,  and Wenbin Zhao, “Progress and Challenges in Small Systems,”  (2024) arXiv:2401.09208 [nucl-th] .
  57. Nicki Mullins, Gabriel S. Denicol,  and Jorge Noronha, “Far-from-equilibrium kinetic dynamics of λ𝜆\lambdaitalic_λϕitalic-ϕ\phiitalic_ϕ4 theory in an expanding universe,” Phys. Rev. D 106, 056024 (2022), arXiv:2207.07786 [hep-ph] .
  58. Caio V. P. de Brito, Gabriel S. Rocha,  and Gabriel S. Denicol, “Hydrodynamic theories for a system of weakly self-interacting classical ultra-relativistic scalar particles: causality and stability,”   (2023), arXiv:2311.07272 [nucl-th] .
  59. Caio V. P. de Brito and Gabriel S. Denicol, “Method of moments for a relativistic single-component gas,”   (2024), arXiv:2401.10098 [nucl-th] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube