Papers
Topics
Authors
Recent
2000 character limit reached

A flat perspective on moduli spaces of hyperbolic surfaces (2405.10869v1)

Published 17 May 2024 in math.AG, math-ph, math.DS, and math.MP

Abstract: Volumes of moduli spaces of hyperbolic cone surfaces were previously defined and computed when the angles of the cone singularities are at most 2pi. We propose a general definition of these volumes without restriction on the angles. This construction is based on flat geometry as our proposed volume is a limit of Masur-Veech volumes of moduli spaces of multi-differentials. This idea generalizes the observation in quantum gravity that the Jackiw-Teitelboim partition function is a limit of minimal string partition functions from Liouville gravity. Finally, we use the properties of these volumes to recover Mirzakhani's recursion formula for Weil-Petersson polynomials. This provides a new proof of Witten-Kontsevich's theorem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. L. Anagnostou and S. Mullane. Volumes of moduli spaces of hyperbolic surfaces with cone points. 2022, arXiv:2212.13701.
  2. Weil-petersson volumes, stability conditions and wall-crossing. 2023, arXiv:2310.13281.
  3. Strata of k𝑘kitalic_k-differentials. Algebr. Geom., 6(2):196–233, 2019.
  4. G. Bini. Chern classes of the moduli stack of curves. Math. Res. Lett., 12(5-6):759–766, 2005.
  5. Masur-Veech volumes and intersection theory: the principal strata of quadratic differentials. Duke Math. J., 172(9):1735–1779, 2023.
  6. Masur-Veech volumes and intersection theory on moduli spaces of Abelian differentials. Invent. Math., 222(1):283–373, 2020.
  7. The area is a good enough metric. arXiv:1910.14151, 2019.
  8. N. Do and P. Norbury. Weil-Petersson volumes and cone surfaces. Geom. Dedicata, 141:93–107, 2009.
  9. Y. Du. A simple recursion for the mirzakhani volume and its super extension. 2020, arXiv:2008.04458.
  10. W. M. Goldman. The symplectic nature of fundamental groups of surfaces. Adv. Math., 54:200–225, 1984.
  11. T. Graber and R. Pandharipande. Constructions of nontautological classes on moduli spaces of curves. Michigan Math. J., 51(1):93–109, 2003.
  12. B. Hassett. Moduli spaces of weighted pointed stable curves. Adv. Math., 173(2):316–352, 2003.
  13. M. Kontsevich. Intersection theory on the moduli space of curves and the matrix Airy function. Comm. Math. Phys., 147(1):1–23, 1992.
  14. H. Masur. Interval exchange transformations and measured foliations. Ann. of Math. (2), 115(1):169–200, 1982.
  15. M. Mirzakhani. Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. Math., 167(1):179–222, 2007.
  16. M. Mirzakhani. Weil-Petersson volumes and intersection theory on the moduli space of curves. J. Amer. Math. Soc., 20(1):1–23, 2007.
  17. H. Maxfield and G. J. Turiaci. The path integral of 3d gravity near extremality; or, JT gravity with defects as a matrix integral. J. High Energy Phys., 2021(1):56, 2021. Id/No 118.
  18. X. Ma and W. Zhang. Superconnection and family Bergman kernels. C. R., Math., Acad. Sci. Paris, 344(1):41–44, 2007.
  19. A. Sauvaget. Cohomology classes of strata of differentials. Geom. Topol., 23(3):1085–1171, 2019.
  20. A. Sauvaget. Volumes of moduli spaces of flat surfaces. arXiv:2004.03198, 2020.
  21. Jt gravity as a matrix integral. arXiv:1903.11115, 2019.
  22. G. Schumacher and S. Trapani. Weil-Petersson geometry for families of hyperbolic conical Riemann surfaces. Michigan Math. J., 60(1):3–33, 2011.
  23. M. Troyanov. Prescribing curvature on compact surfaces with conical singularities. Trans. Amer. Math. Soc., 324(2):793–821, 1991.
  24. Generalizations of McShane’s identity to hyperbolic cone-surfaces. J. Differential Geom., 72(1):73–112, 2006.
  25. W. A. Veech. Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. (2), 115(1):201–242, 1982.
  26. Edward Witten. Two-dimensional gravity and intersection theory on moduli space. In Surveys in differential geometry (Cambridge, MA, 1990), pages 243–310. Lehigh Univ., Bethlehem, PA, 1991.
  27. E. Witten. Matrix models and deformations of JT gravity. Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci., 476(2244):29, 2020. Id/No 20200582.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.