Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

First principles simulations of dense hydrogen (2405.10627v1)

Published 17 May 2024 in physics.comp-ph and physics.plasm-ph

Abstract: Accurate knowledge of the properties of hydrogen at high compression is crucial for astrophysics (e.g. planetary and stellar interiors, brown dwarfs, atmosphere of compact stars) and laboratory experiments, including inertial confinement fusion. There exists experimental data for the equation of state, conductivity, and Thomson scattering spectra. However, the analysis of the measurements at extreme pressures and temperatures typically involves additional model assumptions, which makes it difficult to assess the accuracy of the experimental data. rigorously. On the other hand, theory and modeling have produced extensive collections of data. They originate from a very large variety of models and simulations including path integral Monte Carlo (PIMC) simulations, density functional theory (DFT), chemical models, machine-learned models, and combinations thereof. At the same time, each of these methods has fundamental limitations (fermion sign problem in PIMC, approximate exchange-correlation functionals of DFT, inconsistent interaction energy contributions in chemical models, etc.), so for some parameter ranges accurate predictions are difficult. Recently, a number of breakthroughs in first principle PIMC and DFT simulations were achieved which are discussed in this review. Here we use these results to benchmark different simulation methods. We present an update of the hydrogen phase diagram at high pressures, the expected phase transitions, and thermodynamic properties including the equation of state and momentum distribution. Furthermore, we discuss available dynamic results for warm dense hydrogen, including the conductivity, dynamic structure factor, plasmon dispersion, imaginary-time structure, and density response functions. We conclude by outlining strategies to combine different simulations to achieve accurate theoretical predictions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (786)
  1. Douglas Gough, “Inverting helioseismic data,” Solar Physics 100, 65–99 (1985).
  2. J. Christensen-Dalsgaard, T. L. Duvall, D. O. Gough, J. W. Harvey,  and E. J. Rhodes, “Speed of sound in the solar interior,” Nature 315, 378–382 (1985).
  3. D. O. Gough, A. G. Kosovichev, J. Toomre, E. Anderson, H. M. Antia, S. Basu, B. Chaboyer, S. M. Chitre, J. Christensen-Dalsgaard, W. A. Dziembowski, A. Eff-Darwich, J. R. Elliott, P. M. Giles, P. R. Goode, J. A. Guzik, J. W. Harvey, F. Hill, J. W. Leibacher, M. J. P. F. G. Monteiro, O. Richard, T. Sekii, H. Shibahashi, M. Takata, M. J. Thompson, S. Vauclair,  and S. V. Vorontsov, “The seismic structure of the sun,” Science 272, 1296–1300 (1996).
  4. R. J. Hemley and H. K. Mao, “Phase transition in solid molecular hydrogen at ultrahigh pressures,” Phys. Rev. Lett. 61, 857–860 (1988).
  5. W. J. Nellis, A. C. Mitchell, P. C. McCandless, D. J. Erskine,  and S. T. Weir, “Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures,” Phys. Rev. Lett. 68, 2937–2940 (1992).
  6. S. T. Weir, A. C. Mitchell,  and W. J. Nellis, “Metallization of fluid molecular hydrogen at 140 gpa (1.4 mbar),” Phys. Rev. Lett. 76, 1860–1863 (1996a).
  7. F. V. Grigorev, S. B. Kormer, O. L. Mikhailova, A. P. Tolochko,  and V. D. Urlin, “Experimental Determination of the Compressibility of Hydrogen at Densities 0.5 - 2 g/cm3. Metallization of Hydrogen,” Soviet Journal of Experimental and Theoretical Physics Letters 16, 201 (1972).
  8. V. E. Fortov, R. I. Ilkaev, V. A. Arinin, V. V. Burtzev, V. A. Golubev, I. L. Iosilevskiy, V. V. Khrustalev, A. L. Mikhailov, M. A. Mochalov, V. Ya. Ternovoi,  and M. V. Zhernokletov, “Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures,” Phys. Rev. Lett. 99, 185001 (2007).
  9. L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee Jr., B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng,  and G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 gpa (2 mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
  10. John Nuckols, Lowell Wood, Albert Thiessen,  and George Zimmermann, “Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications,” Nature 239, 139–142 (1972).
  11. John Lindl, “Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Physics of Plasmas 2, 3933–4024 (1995).
  12. R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl,  and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Physics of Plasmas 22, 110501 (2015).
  13. Abu-Shawareb et al., “Lawson criterion for ignition exceeded in an inertial fusion experiment,” Phys. Rev. Lett. 129, 075001 (2022).
  14. H. Abu-Shawareb, R. Acree, P. Adams, B. Addis,  and R. Aden, “Achievement of target gain larger than unity in an inertial fusion experiment,” Phys. Rev. Lett. 132, 065102 (2024).
  15. O. A. Hurricane, D. A. Callahan, D. T. Casey, A. R. Christopherson, A. L. Kritcher, O. L. Landen, S. A. Maclaren, R. Nora, P. K. Patel, J. Ralph, D. Schlossberg, P. T. Springer, C. V. Young,  and A. B. Zylstra, “Energy principles of scientific breakeven in an inertial fusion experiment,” Phys. Rev. Lett. 132, 065103 (2024).
  16. A. Pak, A. B. Zylstra, K. L. Baker, D. T. Casey, E. Dewald, L. Divol, M. Hohenberger, A. S. Moore, J. E. Ralph, D. J. Schlossberg, R. Tommasini, N. Aybar, B. Bachmann, R. M. Bionta, D. Fittinghoff, M. Gatu Johnson, H. Geppert Kleinrath, V. Geppert Kleinrath, K. D. Hahn, M. S. Rubery, O. L. Landen, J. D. Moody, L. Aghaian, A. Allen, S. H. Baxamusa, S. D. Bhandarkar, J. Biener, N. W. Birge, T. Braun, T. M. Briggs, C. Choate, D. S. Clark, J. W. Crippen, C. Danly, T. Döppner, M. Durocher, M. Erickson, T. Fehrenbach, M. Freeman, M. Havre, S. Hayes, T. Hilsabeck, J. P. Holder, K. D. Humbird, O. A. Hurricane, N. Izumi, S. M. Kerr, S. F. Khan, Y. H. Kim, C. Kong, J. Jeet, B. Kozioziemski, A. L. Kritcher, K. M. Lamb, N. C. Lemos, B. J. MacGowan, A. J. Mackinnon, A. G. MacPhee, E. V. Marley, K. Meaney, M. Millot, J.-M. G. Di Nicola, A. Nikroo, R. Nora, M. Ratledge, J. S. Ross, S. J. Shin, V. A. Smalyuk, M. Stadermann, S. Stoupin, T. Suratwala, C. Trosseille, B. Van Wonterghem, C. R. Weber, C. Wild, C. Wilde, P. T. Wooddy, B. N. Woodworth,  and C. V. Young, “Observations and properties of the first laboratory fusion experiment to exceed a target gain of unity,” Phys. Rev. E 109, 025203 (2024).
  17. Tobias Dornheim, Zhandos A. Moldabekov, Kushal Ramakrishna, Panagiotis Tolias, Andrew D. Baczewski, Dominik Kraus, Thomas R. Preston, David A. Chapman, Maximilian P. Böhme, Tilo Döppner, Frank Graziani, Michael Bonitz, Attila Cangi,  and Jan Vorberger, “Electronic density response of warm dense matter,” Physics of Plasmas 30, 032705 (2023a).
  18. R.H. Fowler, “On Dense Matter,” Mon. Not. R. Astron. Soc. 87, 114–122 (1926).
  19. F. Hund, Matter under very high presseure and temperature (in German), Ergebnisse der Exakten Naturwissenschaften, Vol. 15 (Springer, Berlin, 1936).
  20. E. Wigner and H. B. Huntington, “On the Possibility of a Metallic Modification of Hydrogen,” The Journal of Chemical Physics 3, 764–770 (1935).
  21. N. W. Ashcroft, “Metallic hydrogen: A high-temperature superconductor?” Phys. Rev. Lett. 21, 1748–1749 (1968).
  22. R. J. Hemley and H. K. Mao, “Optical studies of hydrogen above 200 gigapascals: Evidence for metallization by band overlap,” Science 244, 1462–1465 (1989).
  23. R. J. Hemley and H. K. Mao, “Critical behavior in the hydrogen insulator-metal transition,” Science 249, 391–393 (1990).
  24. Paul Loubeyre, Florent Occelli,  and Paul Dumas, “Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen,” Nature 577, 631–635 (2020).
  25. Yue-Kin Tsang and Chris A Jones, “Characterising jupiter’s dynamo radius using its magnetic energy spectrum,” Earth and Planetary Science Letters 530, 115879 (2020).
  26. B. Militzer, F. Soubiran, S. M. Wahl,  and W. Hubbard, “Understanding Jupiter’s Interior,” J. Geophys. Res. Planets 121, 1552 (2016).
  27. Ravit Helled, Guglielmo Mazzola,  and R. Redmer, “Understanding dense hydrogen at planetary conditions,” Nature Reviews Physics 2, 1–13 (2020).
  28. L. Iess, B. Militzer, Y. Kaspi, P. Nicholson, D. Durante, P. Racioppa, A. Anabtawi, E. Galanti, W. Hubbard, M. J. Mariani, P. Tortora, S. Wahl,  and M. Zannoni, “Measurement and implications of Saturn’s gravity field and ring mass,” Science 2965, eaat2965 (2019).
  29. D. Saumon and T. Guillot, “Shock compression of deuterium and the interiors of jupiter and saturn,” Astrop. J 609, 1170 (2004).
  30. Sandro Scandolo, “Liquid–liquid phase transitionhydrogen from first-principlesin compressed simulations ,” PNAS 100, 3051–3053 (2003).
  31. Miguel A Morales, Carlo Pierleoni, Eric Schwegler,  and D M Ceperley, “Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations,” Proc. Nat. Acad. Sc. 107, 12799–12803 (2010).
  32. W Lorenzen, B Holst,  and R Redmer, “First-order liquid-liquid phase transition in dense hydrogen,” Phys. Rev. B 82, 195107 (2010).
  33. Miguel A Morales, Eric Schwegler, David Ceperley, Carlo Pierleoni, Sebastien Hamel,  and Kyle Caspersen, “Phase separation in hydrogen–helium mixtures at mbar pressures,” Proceedings of the National Academy of Sciences 106, 1324–1329 (2009).
  34. Winfried Lorenzen, Bastian Holst,  and Ronald Redmer, “Demixing of hydrogen and helium at megabar pressures,” Phys. Rev. Lett. 102, 115701 (2009).
  35. Manuel Schöttler and Ronald Redmer, “Ab initio calculation of the miscibility diagram for hydrogen-helium mixtures,” Phys. Rev. Lett. 120, 115703 (2018).
  36. S. M. Wahl, W. B. Hubbard, B. Militzer, T. Guillot, Y. Miguel, N. Movshovitz, Y. Kaspi, R. Helled, D. Reese, E. Galanti, S. Levin, J. E. Connerney,  and S. J. Bolton, “Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core,” Geophys. Res. Lett. 44, 4649–4659 (2017).
  37. B. Militzer, W. B. Hubbard, S. Wahl, J. I. Lunine, E. Galanti, Y. Kaspi, Y. Miguel, T. Guillot, K. M. Moore, M. Parisi, J.E.P. Connerney, R. Helled, H. Cao, C. Mankovich, D. J. Stevenson, R. S. Park, M. Wong, S. K. A treya, J. Anderson,  and S.J. Bolton, “Juno Spacecraft Measurements of Jupiter’s Gravity Imply a Dilute Core,” Planet. Sci. J. 3, 185 (2022).
  38. D. Saumon, G. Chabrier,  and H. M. van Horn, “An Equation of State for Low-Mass Stars and Giant Planets,” Astrophys. J. Suppl. Ser. 99, 713 (1995).
  39. B. Militzer and W. B. Hubbard, “Ab Initio Equation of State for Hydrogen-Helium Mixtures with Recalibration of the Giant-Planet Mass-Radius Relation,” Astrophys. J. 774, 148 (2013).
  40. G. Chabrier, S. Mazevet,  and F. Soubiran, “A New Equation of State for Dense Hydrogen–Helium Mixtures,” The Astrophysical Journal 872, 51 (2019).
  41. W. B. Hubbard and B. Militzer, “A Preliminary Jupiter Model,” Astrophys. J. 820, 80 (2016).
  42. Ravit Helled, David J. Stevenson, Jonathan I. Lunine, Scott J. Bolton, Nadine Nettelmann, Sushil Atreya, Tristan Guillot, Burkhard Militzer, Yamila Miguel,  and William B. Hubbard, “Revelations on jupiter’s formation, evolution and interior: Challenges from juno results,” Icarus 378, 114937 (2022).
  43. Burkhard Militzer, “Study of jupiter’s interior with quadratic monte carlo simulations,” The Astrophysical Journal 953, 111 (2023).
  44. S. Howard, T. Guillot, Bazot, M., Miguel, Y., Stevenson, D. J., Galanti, E., Kaspi, Y., Hubbard, W. B., Militzer, B., Helled, R., Nettelmann, N., Idini, B.,  and Bolton, S., “Jupiter’s interior from juno: Equation-of-state uncertainties and dilute core extent,” A&A 672, A33 (2023).
  45. Y. Miguel, M. Bazot, T. Guillot, S. Howard, E. Galanti, Y. Kaspi, W. B. Hubbard, B. Militzer, R. Helled, S. K. Atreya, J. E. P. Connerney, D. Durante, L. Kulowski, J. I. Lunine, D. Stevenson,  and S. Bolton, “Jupiter’s inhomogeneous envelope,” Astron. and Astrophys. 662, A18 (2022).
  46. J. Debras, G. Chabrier,  and D. J. Stevenson, “Superadiabaticity in Jupiter and Giant Planet Interiors,” Astrop. J. Lett. 913, 21 (2021).
  47. Martin French, Andreas Becker, Winfried Lorenzen, Nadine Nettelmann, Mandy Bethkenhagen, Johannes Wicht,  and Ronald Redmer, “Ab initio simulations for material properties along the jupiter adiabat,” The Astrophysical Journal Supplement Series 202, 5 (2012).
  48. Martin Preising, Martin French, Christopher Mankovich, François Soubiran,  and Ronald Redmer, “Material properties of saturn’s interior from ab initio simulations,” The Astrophysical Journal Supplement Series 269, 47 (2023).
  49. K. H. Schramm, “Ionisation und Zustandsgleichung eines Plasmas unter hohen Drucken und Temperaturen,” Zeitschrift für Physik 165, 336–355 (1961).
  50. G.E. Norman and A.N. Starostin, “Insufficiency of the classical description of a nondegenerate dense plasma,” High Temp. 6, 394 (1968).
  51. W. Ebeling and R. Sändig, “Theory of the lonization equilibrium in dense plasmas,” Annalen der Physik 483, 289–305 (1973).
  52. W. Ebeling and W. Richert, “Plasma phase transition in hydrogen,” Physics Letters A 108, 80–82 (1985).
  53. D. G. Hummer and Dimitri Mihalas, “The Equation of State for Stellar Envelopes. I. an Occupation Probability Formalism for the Truncation of Internal Partition Functions,” Astrophys. J.  331, 794 (1988).
  54. Dimitri Mihalas, Werner Dappen,  and D. G. Hummer, “The Equation of State for Stellar Envelopes. II. Algorithm and Selected Results,” Astrophys. J.  331, 815 (1988).
  55. Werner Daeppen, Dimitri Mihalas, D. G. Hummer,  and Barbara Weibel Mihalas, “The Equation of State for Stellar Envelopes. III. Thermodynamic Quantities,” Astrophys. J.  332, 261 (1988).
  56. D. Saumon, W. B. Hubbard, G. Chabrier,  and H. M. van Horn, “The role of the molecular-metallic transition of hydrogen in the evolution of jupiter, saturn, and brown dwarfs,” Astrophys. J 391, 827–831 (1992).
  57. Didier Saumon and Gilles Chabrier, “Fluid hydrogen at high density: Pressure ionization,” Phys. Rev. A 46, 2084–2100 (1992).
  58. M. Schlanges, M. Bonitz,  and A. Tschttschjan, “Plasma phase transition in fluid hydrogen–helium mixtures,” Contrib. Plasma Phys. 35, 109 (1995).
  59. V. Bezkrovniy, V. S. Filinov, D. Kremp, M. Bonitz, M. Schlanges, W. D. Kraeft, P. R. Levashov,  and V. E. Fortov, “Monte Carlo results for the hydrogen Hugoniot,” Phys. Rev. E 70, 057401 (2004).
  60. Heidi Reinholz, Ronald Redmer,  and Stefan Nagel, “Thermodynamic and transport properties of dense hydrogen plasma,” Phys. Rev. E 52, 5368 (1995).
  61. Hauke Juranek and Ronald Redmer, “Self-consistent fluid variational theory for pressure dissociation in dense hydrogen,” The Journal of Chemical Physics 112, 3780–3786 (2000).
  62. Hauke Juranek, Ronald Redmer,  and Yaakov Rosenfeld, “Fluid variational theory for pressure dissociation in dense hydrogen: Multicomponent reference system and nonadditivity effects,” The Journal of Chemical Physics 117, 1768–1774 (2002).
  63. Yuri L. Klimontovich, Kinetic Theory of Nonideal Gases and Nonideal Plasmas (Pergamon Press, 1982).
  64. Yuri L. Klimontovich, Statistical Physics (Harwood Acad. Publ., 1986).
  65. Setsuo Ichimaru, Hiroshi Iyetomi,  and Shigenori Tanaka, “Statistical physics of dense plasmas: Thermodynamics, transport coefficients and dynamic correlations,” Physics Reports 149, 91–205 (1987).
  66. M. Bonitz, Quantum Kinetic Theory, 2nd ed., Teubner-Texte zur Physik (Springer, Cham, 2016).
  67. W. M. C. Foulkes, L. Mitas, R. J. Needs,  and G. Rajagopal, “Quantum monte carlo simulations of solids,” Rev. Mod. Phys. 73, 33–83 (2001).
  68. R. O. Jones, “Density functional theory: Its origins, rise to prominence, and future,” Rev. Mod. Phys. 87, 897–923 (2015).
  69. Lloyd D. Fosdick and Harry F. Jordan, “Path-Integral Calculation of the Two-Particle Slater Sum for He4superscriptHe4{\mathrm{He}}^{4}roman_He start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT,” Phys. Rev. 143, 58–66 (1966).
  70. Harry F. Jordan and Lloyd D. Fosdick, “Three-particle effects in the pair distribution function for he4superscripthe4{\mathrm{he}}^{4}roman_he start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT gas,” Phys. Rev. 171, 128–149 (1968).
  71. V.S. Filinov and G.E. Norman, “On Phase Transition in a Non-Ideal Plasma,” Phys. Lett. A 55, 219 (1975).
  72. M. Troyer and U. J. Wiese, “Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations,” Phys. Rev. Lett 94, 170201 (2005).
  73. T. Dornheim, “Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter,” Phys. Rev. E 100, 023307 (2019).
  74. E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino,  and R. L. Sugar, “Sign problem in the numerical simulation of many-electron systems,” Phys. Rev. B 41, 9301–9307 (1990).
  75. D. M. Ceperley, “Fermion nodes,” Journal of Statistical Physics 63, 1237–1267 (1991a).
  76. B. Militzer, E.L. Pollock,  and D.M. Ceperley, “Path integral Monte Carlo calculation of the momentum distribution of the homogeneous electron gas at finite temperature,” High Energy Density Physics 30, 13–20 (2019).
  77. C Pierleoni, D Ceperley, B Bernu,  and W Magro, “Equation of state of the hydrogen plasma by path integral Monte Carlo simulation,” Physical Review Letters 73, 2145–2149 (1994a).
  78. W. R. Magro, D. M. Ceperley, C. Pierleoni,  and B. Bernu, “Molecular dissociation in hot, dense hydrogen,” Phys. Rev. Lett. 76, 1240–1243 (1996).
  79. Thomas J. Lenosky, Joel D. Kress, Lee A. Collins,  and Inhee Kwon, “Molecular-dynamics modeling of shock-compressed liquid hydrogen,” Phys. Rev. B 55, R11907–R11910 (1997a).
  80. Burkhard Militzer and E. L. Pollock, “Variational density matrix method for warm, condensed matter: Application to dense hydrogen,” Phys. Rev. E 61, 3470–3482 (2000a).
  81. J. Vorberger, I. Tamblyn, B. Militzer,  and S. A. Bonev, “Hydrogen-helium mixtures in the interiors of giant planets,” Phys. Rev. B 75, 024206 (2007a).
  82. Michael P. Desjarlais, “Density-functional calculations of the liquid deuterium hugoniot, reshock, and reverberation timing,” Phys. Rev. B 68, 064204 (2003).
  83. Stanimir A. Bonev, Eric Schwegler, Tadashi Ogitsu,  and Giulia Galli, “A quantum fluid of metallic hydrogen suggested by first-principles calculations,” Nature 431, 669–672 (2004a).
  84. G. W. Collins, L. B. Da Silva, P. Celliers, D. M. Gold, M. E. Foord, R. J. Wallace, A. Ng, S. V. Weber, K. S. Budil,  and R. Cauble, “Measurements of the equation of state of deuterium at the fluid insulator-metal transition,” Science 281, 1178–1181 (1998).
  85. G.I. Kerley, “Molcular based study of fluids,” ACS Washington D.C.  (1983).
  86. B. Militzer and D. M. Ceperley, “Path integral monte carlo calculation of the deuterium hugoniot,” Phys. Rev. Lett. 85, 1890–1893 (2000).
  87. Marvin Ross, “Linear-mixing model for shock-compressed liquid deuterium,” Phys. Rev. B 58, 669–677 (1998).
  88. M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall, J. R. Asay,  and C. Deeney, “Principal hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 gpa using plate impact techniques,” Phys. Rev. B 69, 144209 (2004).
  89. D. G. Hicks, T. R. Boehly, P. M. Celliers, J. H. Eggert, S. J. Moon, D. D. Meyerhofer,  and G. W. Collins, “Laser-driven single shock compression of fluid deuterium from 45 to 220 gpa,” Phys. Rev. B 79, 014112 (2009).
  90. M. D. Knudson and M. P. Desjarlais, “Shock compression of quartz to 1.6 tpa: Redefining a pressure standard,” Phys. Rev. Lett. 103, 225501 (2009).
  91. G. V. Boriskov, A. I. Bykov, R. I. Il’kaev, V. D. Selemir, G. V. Simakov, R. F. Trunin, V. D. Urlin, A. N. Shuikin,  and W. J. Nellis, “Shock compression of liquid deuterium up to 109⁢GPa109GPa109\phantom{\rule{3.00003pt}{0.0pt}}\mathrm{GPa}109 roman_GPa,” Phys. Rev. B 71, 092104 (2005).
  92. T. Sano, N. Ozaki, T. Sakaiya, K. Shigemori, M. Ikoma, T. Kimura, K. Miyanishi, T. Endo, A. Shiroshita, H. Takahashi, T. Jitsui, Y. Hori, Y. Hironaka, A. Iwamoto, T. Kadono, M. Nakai, T. Okuchi, K. Otani, K. Shimizu, T. Kondo, R. Kodama,  and K. Mima, “Laser-shock compression and hugoniot measurements of liquid hydrogen to 55 gpa,” Phys. Rev. B 83, 054117 (2011).
  93. A. Fernandez-Pañella, M. Millot, D. E. Fratanduono, M. P. Desjarlais, S. Hamel, M. C. Marshall, D. J. Erskine, P. A. Sterne, S. Haan, T. R. Boehly, G. W. Collins, J. H. Eggert,  and P. M. Celliers, “Shock compression of liquid deuterium up to 1 tpa,” Phys. Rev. Lett. 122, 255702 (2019).
  94. W. J. Nellis, A. C. Mitchell, M. van Thiel, G. J. Devine, R. J. Trainor,  and N. Brown, “Equation‐of‐state data for molecular hydrogen and deuterium at shock pressures in the range 2–76 GPa (20–760 kbar)a),” The Journal of Chemical Physics 79, 1480–1486 (1983).
  95. R. D. Dick and G. I. Kerley, “Shock compression data for liquids. II. Condensed hydrogen and deuterium,” The Journal of Chemical Physics 73, 5264–5271 (1980).
  96. Bastian Holst, Ronald Redmer,  and Michael P. Desjarlais, “Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations,” Phys. Rev. B 77, 184201 (2008).
  97. L. Caillabet, S. Mazevet,  and P. Loubeyre, “Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5 g/cc up to 10 ev,” Phys. Rev. B 83, 094101 (2011).
  98. Cong Wang and Ping Zhang, “Wide range equation of state for fluid hydrogen from density functional theory,” Physics of Plasmas 20, 092703 (2013).
  99. V. V. Karasiev, S. X. Hu, M. Zaghoo,  and T. R. Boehly, “Exchange-correlation thermal effects in shocked deuterium: Softening the principal hugoniot and thermophysical properties,” Phys. Rev. B 99, 214110 (2019).
  100. Norm M. Tubman, Elisa Liberatore, Carlo Pierleoni, Markus Holzmann,  and David M. Ceperley, “Molecular-atomic transition along the deuterium hugoniot curve with coupled electron-ion monte carlo simulations,” Phys. Rev. Lett. 115, 045301 (2015).
  101. Michele Ruggeri, Markus Holzmann, David M. Ceperley,  and Carlo Pierleoni, “Quantum Monte Carlo determination of the principal Hugoniot of deuterium,” Physical Review B 102, 144108 (2020).
  102. Thomas J. Lenosky, Joel D. Kress,  and Lee A. Collins, “Molecular-dynamics modeling of the hugoniot of shocked liquid deuterium,” Phys. Rev. B 56, 5164–5169 (1997b).
  103. Yaroslav Lavrinenko, Pavel R. Levashov, Dmitry V. Minakov, Igor V. Morozov,  and Ilya A. Valuev, “Equilibrium properties of warm dense deuterium calculated by the wave packet molecular dynamics and density functional theory method,” Phys. Rev. E 104, 045304 (2021a).
  104. M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall, J. R. Asay,  and W. W. Anderson, “Equation of State Measurements in Liquid Deuterium to 70 GPa,” Phys. Rev. Lett. 87, 225501 (2001).
  105. J. R. Rygg, P. M. Celliers,  and G. W. Collins, “Specific heat of electron plasma waves,” Phys. Rev. Lett. 130, 225101 (2023).
  106. S. X. Hu, B. Militzer, V. N. Goncharov,  and S. Skupsky, “First-principles equation-of-state table of deuterium for inertial confinement fusion applications,” Phys. Rev. B 84, 224109 (2011).
  107. Alexey Filinov and Michael Bonitz, “The equation of state of partially ionized hydrogen and deuterium plasma revisited,” Phys. Rev. E 108, 055212 (2023).
  108. P.-F. Loos and P. M. W. Gill, “The uniform electron gas,” Comput. Mol. Sci 6, 410–429 (2016).
  109. Tobias Dornheim, Simon Groth,  and Michael Bonitz, “The uniform electron gas at warm dense matter conditions,” Phys. Rep. 744, 1 – 86 (2018a).
  110. T. Schoof, M. Bonitz, A. Filinov, D. Hochstuhl,  and J.W. Dufty, “Configuration path integral Monte Carlo,” Contrib. Plasma Phys. 84, 687–697 (2011).
  111. Tim Schoof, Simon Groth,  and Michael Bonitz, “Introduction to Configuration Path Integral Monte Carlo,” in Complex Plasmas, Springer Ser. At., Opt., Plasma Phys., Vol. 82, edited by Michael Bonitz, Jose Lopez, Kurt Becker,  and Hauke Thomsen (Springer International Publishing, 2014) pp. 153–194.
  112. T. Schoof, S. Groth,  and M. Bonitz, “Towards ab initio thermodynamics of the electron gas at strong degeneracy,” Contrib. Plasma Phys. 55, 136–143 (2015a).
  113. T. Schoof, S. Groth, J. Vorberger,  and M. Bonitz, “Ab Initio thermodynamic results for the degenerate electron gas at finite temperature,” Phys. Rev. Lett. 115, 130402 (2015b).
  114. Tobias Dornheim, Simon Groth, Alexey Filinov,  and Michael Bonitz, “Permutation blocking path integral monte carlo: a highly efficient approach to the simulation of strongly degenerate non-ideal fermions,” New Journal of Physics 17, 073017 (2015a).
  115. Tobias Dornheim, Tim Schoof, Simon Groth, Alexey Filinov,  and Michael Bonitz, “Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature,” J. Chem. Phys. 143, 204101 (2015b).
  116. Tobias Dornheim, Simon Groth,  and Michael Bonitz, “Permutation blocking path integral monte carlo simulations of degenerate electrons at finite temperature,” Contrib. Plasma Phys. 59, e201800157 (2019a).
  117. S. Groth, T. Schoof, T. Dornheim,  and M. Bonitz, “Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes,” Phys. Rev. B 93, 085102 (2016).
  118. T. Dornheim, S. Groth, T. Schoof, C. Hann,  and M. Bonitz, “Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes: The unpolarized case,” Phys. Rev. B 93, 205134 (2016a).
  119. Tobias Dornheim, Simon Groth, Travis Sjostrom, Fionn D. Malone, W. M. C. Foulkes,  and Michael Bonitz, “Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit,” Phys. Rev. Lett. 117, 156403 (2016b).
  120. Simon Groth, Tobias Dornheim, Travis Sjostrom, Fionn D. Malone, W. M. C. Foulkes,  and Michael Bonitz, “Ab initio Exchange-Correlation Free Energy of the Uniform Electron Gas at Warm Dense Matter Conditions,” Phys. Rev. Lett. 119, 135001 (2017a).
  121. Tobias Dornheim, Simon Groth, Fionn D. Malone, Tim Schoof, Travis Sjostrom, W. M. C. Foulkes,  and Michael Bonitz, “Ab initio quantum Monte Carlo simulation of the warm dense electron gas,” Phys. Plasmas 24, 056303 (2017a).
  122. Simon Groth, Tobias Dornheim,  and Michael Bonitz, “Free energy of the uniform electron gas: Testing analytical models against first‐principles results,” Contrib. Plasma Phys. 57, 137–146 (2017b).
  123. S. Tanaka and S. Ichimaru, “Thermodynamics and correlational properties of finite-temperature electron liquids in the Singwi-Tosi-Land-Sjölander approximation,” J. Phys. Soc. Jpn 55, 2278–2289 (1986).
  124. Shigenori Tanaka, Shinichi Mitake,  and Setsuo Ichimaru, “Parametrized equation of state for electron liquids in the Singwi-Tosi-Land-Sjölander approximation,” Phys. Rev. A 32, 1896–1899 (1985).
  125. T. Sjostrom and J. Dufty, “Uniform electron gas at finite temperatures,” Phys. Rev. B 88, 115123 (2013).
  126. Setsuo Ichimaru, “Nuclear fusion in dense plasmas,” Rev. Mod. Phys. 65, 255–299 (1993).
  127. F. Perrot and M. W. C. Dharma-wardana, “Spin-polarized electron liquid at arbitrary temperatures: Exchange-correlation energies, electron-distribution functions, and the static response functions,” Phys. Rev. B 62, 16536 (2000).
  128. Valentin V. Karasiev, Travis Sjostrom, James Dufty,  and S. B. Trickey, “Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations,” Phys. Rev. Lett. 112, 076403 (2014a).
  129. V. V. Karasiev, L. Calderin,  and S. B. Trickey, “Importance of finite-temperature exchange correlation for warm dense matter calculations,” Phys. Rev. E 93, 063207 (2016).
  130. Kushal Ramakrishna, Tobias Dornheim,  and Jan Vorberger, “Influence of finite temperature exchange-correlation effects in hydrogen,” Phys. Rev. B 101, 195129 (2020).
  131. Alexey Filinov, Pavel R. Levashov,  and Michael Bonitz, “Thermodynamics of the uniform electron gas: Fermionic path integral Monte Carlo simulations in the restricted grand canonical ensemble,” Contributions to Plasma Physics 61, e202100112 (2021).
  132. M. Bonitz, W. Ebeling, A. Filinov, W.D. Kraeft, R. Redmer,  and G. Röpke, “Günter Kelbg, the Kelbg potential and its impact on quantum plasma theory,” Contrib. Plasma Phys. 63, e202300029 (2023a).
  133. Maximilian Böhme, Zhandos A. Moldabekov, Jan Vorberger,  and Tobias Dornheim, “Static electronic density response of warm dense hydrogen: Ab initio path integral monte carlo simulations,” Phys. Rev. Lett. 129, 066402 (2022).
  134. Maximilian Böhme, Zhandos A. Moldabekov, Jan Vorberger,  and Tobias Dornheim, “Ab initio path integral monte carlo simulations of hydrogen snapshots at warm dense matter conditions,” Phys. Rev. E 107, 015206 (2023).
  135. Simon Groth, Tobias Dornheim,  and Michael Bonitz, “Configuration path integral Monte Carlo approach to the static density response of the warm dense electron gas,” J. Chem. Phys. 147, 164108 (2017c).
  136. Tobias Dornheim, Simon Groth, Jan Vorberger,  and Michael Bonitz, “Permutation-blocking path-integral Monte Carlo approach to the static density response of the warm dense electron gas,” Phys. Rev. E 96, 023203 (2017b).
  137. T. Dornheim, J. Vorberger, S. Groth, N. Hoffmann, Zh.A. Moldabekov,  and M. Bonitz, “The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation,” J. Chem. Phys 151, 194104 (2019b).
  138. Tobias Dornheim, Attila Cangi, Kushal Ramakrishna, Maximilian Böhme, Shigenori Tanaka,  and Jan Vorberger, “Effective static approximation: A fast and reliable tool for warm-dense matter theory,” Phys. Rev. Lett. 125, 235001 (2020a).
  139. Tobias Dornheim, Zhandos A. Moldabekov,  and Panagiotis Tolias, “Analytical representation of the local field correction of the uniform electron gas within the effective static approximation,” Phys. Rev. B 103, 165102 (2021a).
  140. Tobias Dornheim, Sebastian Schwalbe, Panagiotis Tolias, Maximilan Böhme, Zhandos Moldabekov,  and Jan Vorberger, “Ab initio density response and local field factor of warm dense hydrogen,”  (2024a).
  141. Tobias Dornheim, Sebastian Schwalbe, Maximilian Böhme, Zhandos Moldabekov, Jan Vorberger,  and Panagiotis Tolias, “Ab initio path integral monte carlo simulations of warm dense two-component systems without fixed nodes: structural properties,”  (2024b).
  142. C Pierleoni, D Ceperley,  and M Holzmann, “Coupled Electron-Ion Monte Carlo calculations of dense metallic hydrogen,” Physical Review Letters 93, 146402 (2004).
  143. Carlo Pierleoni and D.M. Ceperley, “The Coupled Electron-Ion Monte Carlo Method,” in Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1, Lecture Notes in Physics, Vol. 703, edited by Mauro Ferrario, Giovanni Ciccotti,  and Kurt Binder (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006) pp. 641–683.
  144. Guglielmo Mazzola, Ravit Helled,  and Sandro Sorella, “Phase Diagram of Hydrogen and a Hydrogen-Helium Mixture at Planetary Conditions by Quantum Monte Carlo Simulations,” Physical Review Letters 120, 25701 (2018).
  145. S. X. Hu, B. Militzer, V. N. Goncharov,  and S. Skupsky, “Strong coupling and degeneracy effects in inertial confinement fusion implosions,” Phys. Rev. Lett. 104, 235003 (2010).
  146. S. X. Hu, V. N. Goncharov, T. R. Boehly, R. L. McCrory, S. Skupsky, L. A. Collins, J. D. Kress,  and B. Militzer, “Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designsa),” Physics of Plasmas 22, 056304 (2015).
  147. Tobias Dornheim, Jan Vorberger, Zhandos Moldabekov, Gerd Röpke,  and Wolf-Dietrich Kraeft, “The uniform electron gas at high temperatures: ab initio path integral monte carlo simulations and analytical theory,” High Energy Density Physics 45, 101015 (2022a).
  148. Jeffrey M. McMahon, Miguel A. Morales, Carlo Pierleoni,  and David M. Ceperley, “The properties of hydrogen and helium under extreme conditions,” Rev. Mod. Phys. 84, 1607–1653 (2012).
  149. Zhandos Moldabekov, Sebastian Schwalbe, Maximilian Böhme, Jan Vorberger, Xuecheng Shao, Michele Pavanello, Frank Graziani,  and Tobias Dornheim, “Bound state breaking and the importance of thermal exchange-correlation effects in warm dense hydrogen,”  (2023a).
  150. S. H. Glenzer and R. Redmer, “X-ray thomson scattering in high energy density plasmas,” Rev. Mod. Phys 81, 1625 (2009).
  151. B. B. L. Witte, L. B. Fletcher, E. Galtier, E. Gamboa, H. J. Lee, U. Zastrau, R. Redmer, S. H. Glenzer,  and P. Sperling, “Warm dense matter demonstrating non-drude conductivity from observations of nonlinear plasmon damping,” Phys. Rev. Lett. 118, 225001 (2017).
  152. Tobias Dornheim, Maximilian Böhme, Dominik Kraus, Tilo Döppner, Thomas R. Preston, Zhandos A. Moldabekov,  and Jan Vorberger, “Accurate temperature diagnostics for matter under extreme conditions,” Nature Communications 13, 7911 (2022b).
  153. Tobias Dornheim, Maximilian P. Böhme, David A. Chapman, Dominik Kraus, Thomas R. Preston, Zhandos A. Moldabekov, Niclas Schlünzen, Attila Cangi, Tilo Döppner,  and Jan Vorberger, “Imaginary-time correlation function thermometry: A new, high-accuracy and model-free temperature analysis technique for x-ray Thomson scattering data,” Physics of Plasmas 30, 042707 (2023b).
  154. Tobias Dornheim, Tilo Döppner, Andrew D. Baczewski, Panagiotis Tolias, Maximilian P. Böhme, Zhandos A. Moldabekov, Divyanshu Ranjan, David A. Chapman, Michael J. MacDonald, Thomas R. Preston, Dominik Kraus,  and Jan Vorberger, “X-ray thomson scattering absolute intensity from the f-sum rule in the imaginary-time domain,” arXiv  (2023c).
  155. Tobias Dornheim, Tilo Döppner, Panagiotis Tolias, Maximilian Böhme, Luke Fletcher, Thomas Gawne, Frank Graziani, Dominik Kraus, Michael MacDonald, Zhandos Moldabekov, Sebastian Schwalbe, Dirk Gericke,  and Jan Vorberger, “Unraveling electronic correlations in warm dense quantum plasmas,”  (2024c).
  156. Tobias Dornheim, Zhandos Moldabekov, Panagiotis Tolias, Maximilian Böhme,  and Jan Vorberger, “Physical insights from imaginary-time density–density correlation functions,” Matter and Radiation at Extremes 8, 056601 (2023d).
  157. S. Groth, T. Dornheim,  and J. Vorberger, “Ab initio path integral monte carlo approach to the static and dynamic density response of the uniform electron gas,” Phys. Rev. B 99, 235122 (2019).
  158. T. Dornheim, S. Groth, J. Vorberger,  and M. Bonitz, “Ab initio path integral Monte Carlo results for the dynamic structure factor of correlated electrons: From the electron liquid to warm dense matter,” Phys. Rev. Lett. 121, 255001 (2018b).
  159. Paul Hamann, Tobias Dornheim, Jan Vorberger, Zhandos Moldabekov,  and Michael Bonitz, “Dynamic Properties of the warm dense Electron gas: an ab initio path integral Monte Carlo approach,” Phys. Rev. B 102, 125150 (2020a).
  160. Paul Hamann, Tobas Dornheim, Jan Vorberger, Zhandos Moldabekov,  and Michael Bonitz, “Ab initio results for the plasmon dispersion and damping of the warm dense electron gas,” Contrib. Plasma Phys. 60, e202000147 (2020b).
  161. Paul Hamann, Linda Kordts, Alexey Filinov, Michael Bonitz, Tobias Dornheim,  and Jan Vorberger, “Prediction of a roton-type feature in warm dense hydrogen,” Phys. Rev. Res. 5, 033039 (2023).
  162. Ott, Torben, Thomsen, Hauke, Abraham, Jan Willem, Dornheim, Tobias,  and Bonitz, Michael, “Recent progress in the theory and simulation of strongly correlated plasmas: phase transitions, transport, quantum, and magnetic field effects,” Eur. Phys. J. D 72, 84 (2018).
  163. M. Bonitz, V. S. Filinov, V. E. Fortov, P. R. Levashov,  and H. Fehske, “Crystallization in Two-Component Coulomb Systems,” Phys. Rev. Lett. 95, 235006 (2005a).
  164. N. F. Mott, “The basis of the electron theory of metals, with special reference to the transition metals,” Proceedings of the Physical Society. Section A 62, 416 (1949).
  165. N. F. Mott, “Metal-insulator transition,” Rev. Mod. Phys. 40, 677–683 (1968).
  166. Masatoshi Imada, Atsushi Fujimori,  and Yoshinori Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70, 1039–1263 (1998).
  167. Ya.B. Zel’dovich and L.D. Landau, “On the relationship between the liquid and gaseous state in metals,” Zh. Eksp. Teor. Fiz. 14, 32–34 (1926).
  168. David M. Straus and N. W. Ashcroft, “Self-consistent structure of metallic hydrogen,” Phys. Rev. Lett. 38, 415–418 (1977).
  169. G.E. Norman and A.N. Starostin, “Thermodynamics of a strongly nonideal plasma,” High Temp. 8, 381–408 (1970).
  170. S. Franck, “On the dielectric-metal transition in hydrogen,” Annalen der Physik 492, 349–356 (1980).
  171. M. Robnik and W. Kundt, “Hydrogen at High Pressures and Temperatures,” Astron. Astrophys. 120, 227 (1983).
  172. D. Saumon and G. Chabrier, “Fluid hydrogen at high density: The plasma phase transition,” Phys. Rev. Lett. 62, 2397–2400 (1989).
  173. W Ebeling, A Förster, H Hess,  and M Yu Romanovsky, “Thermodynamic and kinetic properties of hot nonideal plasmas,” Plasma Physics and Controlled Fusion 38, A31 (1996).
  174. Dieter Beule, Werner Ebeling, Andreas Förster, Hauke Juranek, Stefan Nagel, Ronald Redmer,  and Gerd Röpke, “Equation of state for hydrogen below 10000 k: From the fluid to the plasma,” Phys. Rev. B 59, 14177–14181 (1999).
  175. V.S. Filinov, V.E. Fortov, M. Bonitz,  and P.R. Levashov, “Phase transition in strongly degenerate hydrogen plasma,” JETP Lett. 74, 384 (2001a).
  176. V. Filinov, M. Bonitz, P. Levashov, V. Fortov, W. Ebeling,  and M. Schlanges, “Plasma phase transition in hydrogen and electron-hole plasmas,” Contrib. Plasma Phys. 43, 290–294 (2003a).
  177. Stanimir A. Bonev, Burkhard Militzer,  and Giulia Galli, “Ab initio simulations of dense liquid deuterium: Comparison with gas-gun shock-wave experiments,” Phys. Rev. B 69, 014101 (2004b).
  178. B. Militzer and D. M. Ceperley, “Path integral monte carlo simulation of the low-density hydrogen plasma,” Phys. Rev. E 63, 066404 (2001a).
  179. The analysis is based on the comparison to simple chemical models and to the PIMC simulations of Ref. Filinov et al. (2001a). Also, the reported strong increase of the conductivity in the same density range is not proof of a phase transition.
  180. Ronald Redmer, “Physical properties of dense, low-temperature plasmas,” Physics Reports 282, 35–157 (1997).
  181. W. Ebeling and G.E. Norman, “Coulombic Phase Transitions in Dense Plasmas,” J. Stat. Phys. 110, 861 (2003).
  182. Genri E. Norman and Ilnur M. Saitov, “Plasma phase transition (by the fiftieth anniversary of the prediction),” Contrib. Plasma Phys. 59, e201800182 (2019).
  183. G.E. Norman and I. M. Saitov, “Plasma phase transition,” Physics Uspekhi 64, 1094–1124 (2021).
  184. G Chabrier, D Saumon,  and A Y Potekhin, “Dense plasmas in astrophysics: from giant planets to neutron stars,” Journal of Physics A: Mathematical and General 39, 4411 (2006).
  185. G. Chabrier, D. Saumon,  and C. Winisdoerffer, “Hydrogen and Helium at High Density and Astrophysical Implications,” Astrophys. Space Sci. 307, 263–267 (2007).
  186. Carlo Pierleoni, Miguel a Morales, Giovanni Rillo, Markus Holzmann,  and David M Ceperley, “Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations,” Proceedings of the National Academy of Sciences 113, 4954–4957 (2016).
  187. Kris T. Delaney, Carlo Pierleoni,  and D. M. Ceperley, “Quantum monte carlo simulation of the high-pressure molecular-atomic crossover in fluid hydrogen,” Phys. Rev. Lett. 97, 235702 (2006).
  188. Eugene Gregoryanz, Cheng Ji, Philip Dalladay-Simpson, Bing Li, Ross T. Howie,  and Ho-Kwang Mao, “Everything you always wanted to know about metallic hydrogen but were afraid to ask,” Matter and Radiation at Extremes 5, 038101 (2020).
  189. Cheng Ji, Bing Li, Wenjun Liu, Jesse S Smith, Arnab Majumdar, Wei Luo, Rajeev Ahuja, Jinfu Shu, Junyue Wang, Stanislav Sinogeikin, Yue Meng, Vitali B Prakapenka, Eran Greenberg, Ruqing Xu, Xianrong Huang, Wenge Yang, Guoyin Shen, Wendy L Mao,  and Ho-Kwang Mao, “Ultrahigh-pressure isostructural electronic transitions in hydrogen,” Nature 573, 558 (2019).
  190. Cheng Ji, Bing Li, Wenjun Liu, Jesse S. Smith, Alexander Björling, Arnab Majumdar, Wei Luo, Rajeev Ahuja, Jinfu Shu, Junyue Wang, Stanislav Sinogeikin, Yue Meng, Vitali B. Prakapenka, Eran Greenberg, Ruqing Xu, Xianrong Huang, Yang Ding, Alexander Soldatov, Wenge Yang, Guoyin Shen, Wendy L. Mao,  and Ho-Kwang Mao, “Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen,” Matter and Radiation at Extremes 5, 038401 (2020).
  191. Chris J Pickard and Richard J Needs, “Structure of phase III of solid hydrogen,” Nature Physics 3, 473–476 (2007).
  192. Ranga P. Dias and Isaac F. Silvera, “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 355, 715–718 (2017a).
  193. M. I. Eremets, A. P. Drozdov, P. P. Kong,  and H. Wang, “Semimetallic molecular hydrogen at pressure above 350 gpa,” Nature Physics 15, 1246–1249 (2019a).
  194. Chang-sheng Zha, Hanyu Liu, John S. Tse,  and Russell J. Hemley, “Melting and high p−t𝑝𝑡p\text{$-$}titalic_p - italic_t transitions of hydrogen up to 300 gpa,” Phys. Rev. Lett. 119, 075302 (2017).
  195. M I Eremets, A P Drozdov, P P Kong,  and H Wang, “Semimetallic molecular hydrogen at pressure above 350 GPa,” Nat. Phys.  (2019b), 10.1038/s41567-019-0646-x.
  196. Hongwei Niu, Yubo Yang, Scott Jensen, Markus Holzmann, Carlo Pierleoni,  and David M. Ceperley, “Stable solid molecular hydrogen above 900k from a machine-learned potential trained with diffusion quantum monte carlo,” Physical Review Letters 130, 76102 (2023).
  197. Mohamed Zaghoo, Ashkan Salamat,  and Isaac F Silvera, “Evidence of a first-order phase transition to metallic hydrogen,” Phys. Rev. B 93, 155128 (2016).
  198. Carlo Pierleoni, Markus Holzmann,  and David M Ceperley, “Local structure in dense hydrogen at the liquid-liquid phase transition by coupled electron-ion Monte Carlo,” Contributions to Plasma Physics 58, 99–106 (2018a).
  199. Vasily Dzyabura, Mohamed Zaghoo,  and Isaac F. Silvera, “Evidence of a liquid–liquid phase transition in hot dense hydrogen,” Proceedings of the National Academy of Sciences 110, 8040–8044 (2013).
  200. Kenji Ohta, Kota Ichimaru, Mari Einaga, Sho Kawaguchi, Katsuya Shimizu, Takahiro Matsuoka, Naohisa Hirao,  and Yasuo Ohishi, “Phase boundary of hot dense fluid hydrogen,” Scientific Reports 5, 16560 (2015).
  201. Shuqing Jiang, Nicholas Holtgrewe, Zachary M. Geballe, Sergey S. Lobanov, Mohammad F. Mahmood, R. Stewart McWilliams,  and Alexander F. Goncharov, “A Spectroscopic Study of the Insulator–Metal Transition in Liquid Hydrogen and Deuterium,” Advanced Science 7 (2020), 10.1002/advs.201901668.
  202. Peter M. Celliers, Marius Millot, Stephanie Brygoo, R. Stewart McWilliams, Dayne E. Fratanduono, J. Ryan Rygg, Alexander F. Goncharov, Paul Loubeyre, Jon H. Eggert, J. Luc Peterson, Nathan B. Meezan, Sebastien Le Pape, Gilbert W. Collins, Raymond Jeanloz,  and Russell J. Hemley, “Insulator-metal transition in dense fluid deuterium,” Science 361, 677–682 (2018a).
  203. M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattsson,  and R. Redmer, “Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348, 1455–1460 (2015).
  204. Giovanni Rillo, Miguel A. Morales, David M. Ceperley,  and Carlo Pierleoni, “Optical properties of high-pressure fluid hydrogen across molecular dissociation,” Proceedings of the National Academy of Sciences of the United States of America 116, 9770–9774 (2019).
  205. Joshua Hinz, Valentin V. Karasiev, S. X. Hu, Mohamed Zaghoo, Daniel Mejiá-Rodríguez, S. B. Trickey,  and L. Calderín, “Fully consistent density functional theory determination of the insulator-metal transition boundary in warm dense hydrogen,” Physical Review Research 2 (2020), 10.1103/PhysRevResearch.2.032065.
  206. Ranga P Dias and Isaac F Silvera, “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 355, 715–718 (2017b).
  207. Chris J Pickard, Miguel Martinez-Canales,  and Richard J Needs, “Density functional theory study of phase IV of solid hydrogen,” Phys. Rev. B 85, 214114 (2012).
  208. Jeremy McMinis, Raymond C. Clay, Donghwa Lee,  and Miguel A. Morales, “Molecular to Atomic Phase Transition in Hydrogen under High Pressure,” Physical Review Letters 114 (2015), 10.1103/PhysRevLett.114.105305.
  209. Vitaly Gorelov, Markus Holzmann, David M. Ceperley,  and Carlo Pierleoni, “Energy Gap Closure of Crystalline Molecular Hydrogen with Pressure,” Physical Review Letters 124, 116401 (2020a).
  210. Giovanni Rillo, Miguel A. Morales, David M. Ceperley,  and Carlo Pierleoni, “Coupled Electron-Ion Monte Carlo simulation of hydrogen molecular crystals,” J. Chem Phys. 148, 102314 (2018).
  211. Sam Azadi and Thomas D. Kühne, “Unconventional phase iii of high-pressure solid hydrogen,” Phys. Rev. B 100, 155103 (2019).
  212. Lorenzo Monacelli, Ion Errea, Matteo Calandra,  and Francesco Mauri, “Black metal hydrogen above 360 GPa driven by proton quantum fluctuations,” Nature Physics  (2020), 10.1038/s41567-020-1009-3.
  213. Lorenzo Monacelli, Michele Casula, Kousuke Nakano, Sandro Sorella,  and Francesco Mauri, “Quantum phase diagram of high-pressure hydrogen,” Nature Physics 19, 845–850 (2023).
  214. Paul Loubeyre, Florent Occelli,  and Paul Dumas, “Compression of D2 to 460 GPa and Isotopic Effects in the Path to Metal Hydrogen,” Physical Review Letters 129, 35501 (2022).
  215. R T Howie, T Scheler, C L Guillaume,  and E Gregoryanz, “Proton tunneling in phase IV of hydrogen and deuterium,” Physical Review B 86, 214104 (2012).
  216. Bartomeu Monserrat, Neil D Drummond, Philip Dalladay-simpson, R T Howie, Pablo Lopez Rios, Eugene Gregoryanz, Chris J Pickard,  and Richard J Needs, “Structure and metallicity of phase V of hydrogen,” Phys Rev Letts 120, 255701 (2018).
  217. Philip Dalladay-Simpson, Ross T Howie,  and Eugene Gregoryanz, “Evidence for a new phase of dense hydrogen above 325 gigapascals,” Nature 529, 63–67 (2016).
  218. Miguel Morales, Raymond Clay, Carlo Pierleoni,  and David Ceperley, “First Principles Methods: A Perspective from Quantum Monte Carlo,” Entropy 16, 287–321 (2013).
  219. Valentin V Karasiev, Joshua Hinz, S X Hu,  and S B Trickey, “On the liquid – liquid phase transition of dense hydrogen,” Nature 600, E12–E16 (2021).
  220. Taras Bryk, Carlo Pierleoni, Giancarlo Ruocco,  and Ari Paavo Seitsonen, “Characterization of molecular-atomic transformation in fluid hydrogen under pressure via long-wavelength asymptote of charge density fluctuations,” Journal of Molecular Liquids 312, 113274 (2020).
  221. Valentin V. Karasiev, D. I. Mihaylov,  and S. X. Hu, “Meta-gga exchange-correlation free energy density functional to increase the accuracy of warm dense matter simulations,” Phys. Rev. B 105, L081109 (2022).
  222. Mohamed Zaghoo, Rachel J. Husband,  and Isaac F. Silvera, “Striking isotope effect on the metallization phase lines of liquid hydrogen and deuterium,” Physical Review B 98, 104102 (2018).
  223. Peter M Celliers, Marius Millot, Stephanie Brygoo, R. Stewart McWilliams, Dayne E Fratanduono, J Ryan Rygg, Alexander F Goncharov, Paul Loubeyre, Jon H Eggert, J Luc Peterson, Nathan B Meezan, Sebastien Le Pape, Gilbert W Collins, Raymond Jeanloz,  and Russell J Hemley, “Insulator-metal transition in dense fluid deuterium,” Science 361, 677–682 (2018b).
  224. Elisa Liberatore, Carlo Pierleoni,  and D. M. Ceperley, “Liquid-solid transition in fully ionized hydrogen at ultra-high pressures,” The Journal of Chemical Physics 134, 184505 (2011).
  225. M. Bonitz, C. Henning,  and D. Block, “Complex plasmas: a laboratory for strong correlations,” Rep. Prog. Phys. 73, 066501 (2010).
  226. J. Böning, A. Filinov, P. Ludwig, H. Baumgartner, M. Bonitz,  and Yu. E. Lozovik, “Melting of trapped few-particle systems,” Phys. Rev. Lett. 100, 113401 (2008).
  227. Burkhard Militzer and Rebekah L. Graham, “Simulations of dense atomic hydrogen in the wigner crystal phase,” Journal of Physics and Chemistry of Solids 67, 2136–2143 (2006), sMEC 2005.
  228. S. Hamaguchi, R. T. Farouki,  and D. H. E. Dubin, “Phase diagram of Yukawa systems near the one‐component‐plasma limit revisited,” The Journal of Chemical Physics 105, 7641–7647 (1996).
  229. T. Ott, M. Stanley,  and M. Bonitz, “Non-invasive determination of the parameters of strongly coupled 2D Yukawa liquids,” Phys. Plasmas 18, 063701 (2011).
  230. T. Ott, M. Bonitz, L. G. Stanton,  and M. S. Murillo, “Coupling strength in Coulomb and Yukawa one-component plasmas,” Phys. Plasmas 21, 113704 (2014).
  231. A.A Abrikosov, “A possible mechanism of high temperature superconductivity,” Journal of the Less Common Metals 62, 451–455 (1978).
  232. A.A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988).
  233. M. Bonitz, V. S. Filinov, V. E. Fortov, P. R. Levashov,  and H. Fehske, “Hole crystallization in semiconductors,” J. Phys. A: Math. Gen. 39, 4717 (2006).
  234. Filinov V. S., Bonitz M., Fehske H., Fortov V. E.,  and Levashov P. R., “Proton crystallization in a dense hydrogen plasma,” Contrib. Plasma Phys. 52, 224–228 (2012a).
  235. P. Wachter, B. Bucher,  and J. Malar, “Possibility of a superfluid phase in a bose condensed excitonic state,” Phys. Rev. B 69, 094502 (2004).
  236. L. Fiedler, K. Shah, M. Bussmann,  and A. Cangi, “Deep dive into machine learning density functional theory for materials science and chemistry,” Phys. Rev. Materials 6, 040301 (2022a).
  237. Lenz Fiedler, Normand A. Modine, Steve Schmerler, Dayton J. Vogel, Gabriel A. Popoola, Aidan P. Thompson, Sivasankaran Rajamanickam,  and Attila Cangi, “Predicting electronic structures at any length scale with machine learning,” npj Computational Materials 9, 115 (2023).
  238. L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” Journal of Applied Physics 43, 4669–4675 (1972).
  239. K. Falk, S.P. Regan, J. Vorberger, M.A. Barrios, T.R. Boehly, D.E. Fratanduono, S.H. Glenzer, D.G. Hicks, S.X. Hu, C.D. Murphy, P.B. Radha, S. Rothman, A.P. Jephcoat, J.S. Wark, D.O. Gericke,  and G. Gregori, “Self-consistent measurement of the equation of state of liquid deuterium,” High Energy Density Physics 8, 76–80 (2012).
  240. J. E. Miller, T. R. Boehly, A. Melchior, D. D. Meyerhofer, P. M. Celliers, J. H. Eggert, D. G. Hicks, C. M. Sorce, J. A. Oertel,  and P. M. Emmel, “Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA,” Review of Scientific Instruments 78, 034903 (2007).
  241. S. H. Glenzer, O. L. Landen, P. Neumayer, R. W. Lee, K. Widmann, S. W. Pollaine, R. J. Wallace, G. Gregori, A. Höll, T. Bornath, R. Thiele, V. Schwarz, W.-D. Kraeft,  and R. Redmer, “Observations of plasmons in warm dense matter,” Phys. Rev. Lett. 98, 065002 (2007).
  242. K. Falk, E. J. Gamboa, G. Kagan, D. S. Montgomery, B. Srinivasan, P. Tzeferacos,  and J. F. Benage, “Equation of state measurements of warm dense carbon using laser-driven shock and release technique,” Phys. Rev. Lett. 112, 155003 (2014).
  243. D. Kraus, B. Bachmann, B. Barbrel, R. W. Falcone, L. B. Fletcher, S. Frydrych, E. J. Gamboa, M. Gauthier, D. O. Gericke, S. H. Glenzer, S. Göde, E. Granados, N. J. Hartley, J. Helfrich, H. J. Lee, B. Nagler, A. Ravasio, W. Schumaker, J. Vorberger,  and T. Döppner, “Characterizing the ionization potential depression in dense carbon plasmas with high-precision spectrally resolved x-ray scattering,” Plasma Phys. Control Fusion 61, 014015 (2019).
  244. T. Döppner, M. Bethkenhagen, D. Kraus, P. Neumayer, D. A. Chapman, B. Bachmann, R. A. Baggott, M. P. Böhme, L. Divol, R. W. Falcone, L. B. Fletcher, O. L. Landen, M. J. MacDonald, A. M. Saunders, M. Schörner, P. A. Sterne, J. Vorberger, B. B. L. Witte, A. Yi, R. Redmer, S. H. Glenzer,  and D. O. Gericke, “Observing the onset of pressure-driven k-shell delocalization,” Nature  (2023), 10.1038/s41586-023-05996-8.
  245. L. B. Fletcher, U. Zastrau, E. Galtier, E. J. Gamboa, S. Goede, W. Schumaker, A. Ravasio, M. Gauthier, M. J. MacDonald, Z. Chen, E. Granados, H. J. Lee, A. Fry, J. B. Kim, C. Roedel, R. Mishra, A. Pelka, D. Kraus, B. Barbrel, T. Döppner,  and S. H. Glenzer, “High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source,” Review of Scientific Instruments 87, 11E524 (2016).
  246. E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane,  and R. Al-Ayat, “The national ignition facility: Ushering in a new age for high energy density science,” Physics of Plasmas 16, 041006 (2009).
  247. U. Zastrau, P. Sperling, M. Harmand, A. Becker, T. Bornath, R. Bredow, S. Dziarzhytski, T. Fennel, L. B. Fletcher, E. Förster, S. Göde, G. Gregori, V. Hilbert, D. Hochhaus, B. Holst, T. Laarmann, H. J. Lee, T. Ma, J. P. Mithen, R. Mitzner, C. D. Murphy, M. Nakatsutsumi, P. Neumayer, A. Przystawik, S. Roling, M. Schulz, B. Siemer, S. Skruszewicz, J. Tiggesbäumker, S. Toleikis, T. Tschentscher, T. White, M. Wöstmann, H. Zacharias, T. Döppner, S. H. Glenzer,  and R. Redmer, “Resolving ultrafast heating of dense cryogenic hydrogen,” Phys. Rev. Lett 112, 105002 (2014).
  248. L. B. Fletcher, J. Vorberger, W. Schumaker, C. Ruyer, S. Goede, E. Galtier, U. Zastrau, E. P. Alves, S. D. Baalrud, R. A. Baggott, B. Barbrel, Z. Chen, T. Döppner, M. Gauthier, E. Granados, J. B. Kim, D. Kraus, H. J. Lee, M. J. MacDonald, R. Mishra, A. Pelka, A. Ravasio, C. Roedel, A. R. Fry, R. Redmer, F. Fiuza, D. O. Gericke,  and S. H. Glenzer, “Electron-ion temperature relaxation in warm dense hydrogen observed with picosecond resolved x-ray scattering,” Frontiers in Physics 10 (2022), 10.3389/fphy.2022.838524.
  249. Jan Vorberger, Thomas R. Preston, Nikita Medvedev, Maximilian P. Böhme, Zhandos A. Moldabekov, Dominik Kraus,  and Tobias Dornheim, “Revealing non-equilibrium and relaxation in laser heated matter,” Physics Letters A 499, 129362 (2024).
  250. M. J. MacDonald, A. M. Saunders, B. Bachmann, M. Bethkenhagen, L. Divol, M. D. Doyle, L. B. Fletcher, S. H. Glenzer, D. Kraus, O. L. Landen, H. J. LeFevre, S. R. Klein, P. Neumayer, R. Redmer, M. Schörner, N. Whiting, R. W. Falcone,  and T. Döppner, “Demonstration of a laser-driven, narrow spectral bandwidth x-ray source for collective x-ray scattering experiments,” Physics of Plasmas 28, 032708 (2021).
  251. A. N. Starostin, A. G. Leonov, Yu. V. Petrushevich,  and Vl. K. Rerikh, “Quantum corrections to the particle distribution function and reaction rates in dense media,” Plasma Physics Reports 31, 123–132 (2005).
  252. A. N. Starostin, V. K. Gryaznov,  and Yu. V. Petrushevich, “Development of the theory of momentum distribution of particles with regard to quantum phenomena,” Journal of Experimental and Theoretical Physics 125, 940–947 (2017).
  253. Maximilian Schörner, Mandy Bethkenhagen, Tilo Döppner, Dominik Kraus, Luke B. Fletcher, Siegfried H. Glenzer,  and Ronald Redmer, “X-ray thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified chihara formula,” Phys. Rev. E 107, 065207 (2023).
  254. J. Lütgert, M. Bethkenhagen, B. Bachmann, L. Divol, D. O. Gericke, S. H. Glenzer, G. N. Hall, N. Izumi, S. F. Khan, O. L. Landen, S. A. MacLaren, L. Masse, R. Redmer, M. Schörner, M. O. Schölmerich, S. Schumacher, N. R. Shaffer, C. E. Starrett, P. A. Sterne, C. Trosseille, T. Döppner,  and D. Kraus, “Platform for probing radiation transport properties of hydrogen at conditions found in the deep interiors of red dwarfs,” Physics of Plasmas 29, 083301 (2022).
  255. Tobias Dornheim, Jan Vorberger,  and Michael Bonitz, “Nonlinear electronic density response in warm dense matter,” Phys. Rev. Lett. 125, 085001 (2020b).
  256. Tobias Dornheim, Jan Vorberger, Zhandos A. Moldabekov,  and Panagiotis Tolias, “Spin-resolved density response of the warm dense electron gas,” Phys. Rev. Research 4, 033018 (2022c).
  257. Panagiotis Tolias, Tobias Dornheim, Zhandos A. Moldabekov,  and Jan Vorberger, “Unravelling the nonlinear ideal density response of many-body systems,” Europhysics Letters 142, 44001 (2023a).
  258. Tobias Dornheim, Jan Vorberger,  and Zhandos A. Moldabekov, “Nonlinear density response and higher order correlation functions in warm dense matter,” Journal of the Physical Society of Japan 90, 104002 (2021b).
  259. Tobias Dornheim, Jan Vorberger, Burkhard Militzer,  and Zhandos A. Moldabekov, “Momentum distribution of the uniform electron gas at finite temperature: Effects of spin polarization,” Phys. Rev. E 104, 055206 (2021c).
  260. Tobias Dornheim, Panagiotis Tolias, Zhandos A. Moldabekov, Attila Cangi,  and Jan Vorberger, “Effective electronic forces and potentials from ab initio path integral monte carlo simulations,” The Journal of Chemical Physics 156, 244113 (2022d).
  261. Carl A. Kukkonen and A. W. Overhauser, “Electron-electron interaction in simple metals,” Phys. Rev. B 20, 550–557 (1979).
  262. Carl A. Kukkonen and Kun Chen, “Quantitative electron-electron interaction using local field factors from quantum monte carlo calculations,” Phys. Rev. B 104, 195142 (2021).
  263. J. J. Kas and J. J. Rehr, “Finite temperature green’s function approach for excited state and thermodynamic properties of cool to warm dense matter,” Phys. Rev. Lett. 119, 176403 (2017).
  264. N. Schlünzen, J.-P. Joost, F. Heidrich-Meisner,  and M. Bonitz, “Nonequilibrium dynamics in the one-dimensional Fermi-Hubbard model: Comparison of the nonequilibrium Green-functions approach and the density matrix renormalization group method,” Phys. Rev. B 95, 165139 (2017).
  265. Z. A. Moldabekov, T. Dornheim, G. Gregori, F. Graziani, M. Bonitz,  and A. Cangi, “Towards a Quantum Fluid Theory of Correlated Many-Fermion Systems from First Principles,” SciPost Phys. 12, 62 (2022).
  266. Valerio Olevano, Andrey Titov, Massimo Ladisa, Keijo Hämäläinen, Simo Huotari,  and Markus Holzmann, “Momentum distribution and compton profile by the ab initio gw approximation,” Phys. Rev. B 86, 195123 (2012).
  267. Hans Feldmeier and Jürgen Schnack, “Molecular dynamics for fermions,” Reviews of Modern Physics 72, 655 (2000).
  268. G Zwicknagel and T Pschiwul, “Wpmd simulations of a two-component plasma,” Journal of Physics A: Mathematical and General 39, 4359 (2006).
  269. M. Boninsegni, N. V. Prokofev,  and B. V. Svistunov, “Worm algorithm for continuous-space path integral Monte Carlo simulations,” Phys. Rev. Lett 96, 070601 (2006a).
  270. Mark Jarrell and J.E. Gubernatis, “Bayesian inference and the analytic continuation of imaginary-time quantum monte carlo data,” Physics Reports 269, 133–195 (1996).
  271. Fedor Akhmetov, Igor Milov, Igor A. Makhotkin, Marcelo Ackermann,  and Jan Vorberger, “Electron-phonon coupling in transition metals beyond wang’s approximation,” Phys. Rev. B 108, 214301 (2023).
  272. Jacopo Simoni and Jérôme Daligault, “First-principles determination of electron-ion couplings in the warm dense matter regime,” Phys. Rev. Lett. 122, 205001 (2019).
  273. Zh.A. Moldabekov, S.M. Amirov, P. Ludwig, M. Bonitz,  and T.S. Ramazanov, “Effect of the dynamical collision frequency on quantum wakefields,” Contributions to Plasma Physics 59, e201800161 (2019).
  274. H. Reinholz, R. Redmer, G. Röpke,  and A. Wierling, “Long-wavelength limit of the dynamical local-field factor and dynamical conductivity of a two-component plasma,” Phys. Rev. E 62, 5648–5666 (2000).
  275. D. O. Gericke, M. S. Murillo,  and M. Schlanges, “Dense plasma temperature equilibration in the binary collision approximation,” Phys. Rev. E 65, 036418 (2002a).
  276. S.K. Kodanova, M.K. Issanova, S.M. Amirov, T.S. Ramazanov, A. Tikhonov,  and Zh.A. Moldabekov, “Relaxation of non-isothermal hot dense plasma parameters,” Matter and Radiation at Extremes 3, 40–49 (2017).
  277. J. M. Ziman, “A theory of the electrical properties of liquid metals. i: The monovalent metals,” The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 6, 1013–1034 (1961).
  278. Thomas W. Hentschel, Alina Kononov, Alexandra Olmstead, Attila Cangi, Andrew D. Baczewski,  and Stephanie B. Hansen, “Improving dynamic collision frequencies: Impacts on dynamic structure factors and stopping powers in warm dense matter,” Physics of Plasmas 30, 062703 (2023).
  279. Simone Chiesa, David M. Ceperley, Richard M. Martin,  and Markus Holzmann, “Finite-size error in many-body simulations with long-range interactions,” Phys. Rev. Lett. 97, 076404 (2006).
  280. N. D. Drummond, R. J. Needs, A. Sorouri,  and W. M. C. Foulkes, “Finite-size errors in continuum quantum monte carlo calculations,” Phys. Rev. B 78, 125106 (2008).
  281. Markus Holzmann, Raymond C. Clay, Miguel A. Morales, Norm M. Tubman, David M. Ceperley,  and Carlo Pierleoni, “Theory of finite size effects for electronic quantum monte carlo calculations of liquids and solids,” Phys. Rev. B 94, 035126 (2016a).
  282. Tobias Dornheim and Jan Vorberger, “Overcoming finite-size effects in electronic structure simulations at extreme conditions,” The Journal of Chemical Physics 154, 144103 (2021).
  283. A. A. Kugler, “Bounds for some equilibrium properties of an electron gas,” Phys. Rev. A 1, 1688 (1970).
  284. Ethan W. Brown, Bryan K. Clark, Jonathan L. DuBois,  and David M. Ceperley, “Path-integral monte carlo simulation of the warm dense homogeneous electron gas,” Phys. Rev. Lett. 110, 146405 (2013a).
  285. G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, 2013).
  286. Niclas Schlünzen, Sebastian Hermanns, Miriam Scharnke,  and Michael Bonitz, “Ultrafast dynamics of strongly correlated fermions – Nonequilibrium Green functions and selfenergy approximations,” Journal of Physics: Condensed Matter 32, 103001 (2020a).
  287. M. Bonitz, Quantum Kinetic Theory, Teubner-Texte zur Physik, Vol. 33 (B.G. Teubner, 1998).
  288. Kun Chen and Kristjan Haule, “A combined variational and diagrammatic quantum monte carlo approach to the many-electron problem,” Nature Communications 10, 3725 (2019).
  289. K. Haule and K Chen, “Static Self-Energy and Effective Mass of the Homogeneous Electron Gas from Quantum Monte Carlo Calculations,” Sci. Rep. 12, 2294 (2022).
  290. V.S. Filinov, V.E. Fortov, M. Bonitz,  and D. Kremp, “Pair distribution functions of dense partially ionized hydrogen,” Phys. Lett. A 274, 228 – 235 (2000).
  291. A. D. Becke and K. E. Edgecombe, “A simple measure of electron localization in atomic and molecular systems,” The Journal of Chemical Physics 92, 5397–5403 (1990).
  292. Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza,  and David Vanderbilt, “Maximally localized wannier functions: Theory and applications,” Rev. Mod. Phys. 84, 1419–1475 (2012).
  293. Michael S Murillo, Jon Weisheit, Stephanie B Hansen,  and MWC Dharma-Wardana, “Partial ionization in dense plasmas: Comparisons among average-atom density functional models,” Physical Review E 87, 063113 (2013).
  294. N.F. Carnahan and K.E. Starling, “Equation of State for Nonattracting Rigid Spheres,” J. Chem. Phys. 51, 635 (1969).
  295. G.A. Mansoori, N.F. Carnahan, K.E. Starling,  and T.W. Leland, “Equilibrium thermodynamic properties of the mixture of hard spheres,” J. Chem. Phys. 54, 1523 (1971).
  296. M. Ross, F. H. Ree,  and D. A. Young, “The equation of state of molecular hydrogen at very high densitya),” The Journal of Chemical Physics 79, 1487–1494 (1983).
  297. R. Redmer, G. Röpke,  and R. Zimmermann, “Effective electron-atom interactions and virial coefficients in alkali plasmas,” J. Phys. B: At. Mol. Phys. 20, 4069 (1987).
  298. T.J. Lenosky, J.D. Kress, L.A. Collins, R. Redmer,  and H. Juranek, “Simulations of fluid hydrogen: Comparison of a dissociation model with tight-binding molecular dynamics,” Phys. Rev. E 60, 1665 (1999).
  299. J Chihara, “Difference in x-ray scattering between metallic and non-metallic liquids due to conduction electrons,” Journal of Physics F: Metal Physics 17, 295–304 (1987).
  300. Junzo Chihara, “Interaction of photons with plasmas and liquid metals - photoabsorption and scattering,” Journal of Physics: Condensed Matter 12, 231 (2000).
  301. K. Wünsch, J. Vorberger, G. Gregori,  and D. O. Gericke, “X-ray scattering as a probe for warm dense mixtures and high-pressure miscibility,” Europhysics Letters 94, 25001 (2011).
  302. K. Wünsch, J. Vorberger,  and D. O. Gericke, “Ion structure in warm dense matter: Benchmarking solutions of hypernetted-chain equations by first-principle simulations,” Phys. Rev. E 79, 010201 (2009).
  303. J. Vorberger and D. O. Gericke, “Ab initio approach to model x-ray diffraction in warm dense matter,” Phys. Rev. E 91, 033112 (2015).
  304. Tobias Dornheim, Sebastian Schwalbe, Panagiotis Tolias, Maximilan Böhme, Zhandos Moldabekov,  and Jan Vorberger, “Ab initio density response and local field factor of warm dense hydrogen,”  (2024d).
  305. K Wünsch, J Vorberger, M Schlanges,  and D O Gericke, “Ion structure for x-ray thomson scattering in dense fusion plasmas,” Journal of Physics: Conference Series 112, 032077 (2008).
  306. D. O. Gericke, J. Vorberger, K. Wünsch,  and G. Gregori, “Screening of ionic cores in partially ionized plasmas within linear response,” Phys. Rev. E 81, 065401 (2010).
  307. Carsten Fortmann, August Wierling,  and Gerd Röpke, “Influence of local-field corrections on thomson scattering in collision-dominated two-component plasmas,” Phys. Rev. E 81, 026405 (2010).
  308. Brian A. Mattern, Gerald T. Seidler, Joshua J. Kas, Joseph I. Pacold,  and John J. Rehr, “Real-space green’s function calculations of compton profiles,” Phys. Rev. B 85, 115135 (2012).
  309. Brian A. Mattern and Gerald T. Seidler, “Theoretical treatments of the bound-free contribution and experimental best practice in X-ray Thomson scattering from warm dense matter,” Physics of Plasmas 20, 022706 (2013).
  310. John C. Stewart and Jr. Pyatt, Kedar D., “Lowering of Ionization Potentials in Plasmas,” Astrophys. J.  144, 1203 (1966).
  311. Ryogo Kubo, “Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems,” Journal of the Physical Society of Japan 12, 570–586 (1957).
  312. DA Greenwood, “The boltzmann equation in the theory of electrical conduction in metals,” Proceedings of the Physical Society 71, 585 (1958).
  313. KU Plagemann, P Sperling, R Thiele, MP Desjarlais, C Fortmann, T Döppner, HJ Lee, Siegfried H Glenzer,  and R Redmer, “Dynamic structure factor in warm dense beryllium,” New Journal of Physics 14, 055020 (2012).
  314. P. Sperling, E. J. Gamboa, H. J. Lee, H. K. Chung, E. Galtier, Y. Omarbakiyeva, H. Reinholz, G. Röpke, U. Zastrau, J. Hastings, L. B. Fletcher,  and S. H. Glenzer, “Free-electron x-ray laser measurements of collisional-damped plasmons in isochorically heated warm dense matter,” Phys. Rev. Lett. 115, 115001 (2015).
  315. Mandy Bethkenhagen, Bastian B. L. Witte, Maximilian Schörner, Gerd Röpke, Tilo Döppner, Dominik Kraus, Siegfried H. Glenzer, Philip A. Sterne,  and Ronald Redmer, “Carbon ionization at gigabar pressures: An ab initio perspective on astrophysical high-density plasmas,” Phys. Rev. Res. 2, 023260 (2020).
  316. Chongjie Mo, Zhen-Guo Fu, Ping Zhang, Wei Kang, Weiyan Zhang,  and X. T. He, “First-principles method for x-ray thomson scattering including both elastic and inelastic features in warm dense matter,” Phys. Rev. B 102, 195127 (2020).
  317. P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136, B864–B871 (1964).
  318. N. David Mermin, “Thermal properties of the inhomogeneous electron gas,” Phys. Rev. 137, A1441–A1443 (1965).
  319. Helmut Eschrig, “T ensemble-state density functional theory via legendre transform,” Phys. Rev. B 82, 205120 (2010).
  320. Erich Runge and E. K. U. Gross, “Density-functional theory for time-dependent systems,” Phys. Rev. Lett. 52, 997–1000 (1984).
  321. M. Born and R. Oppenheimer, “Zur quantentheorie der molekeln,” Annalen der Physik 389, 457–484 (1927).
  322. J. J. Mortensen, L. B. Hansen,  and K. W. Jacobsen, “Real-space grid implementation of the projector augmented wave method,” Physical Review B 71, 035109 (2005).
  323. J Enkovaara, C Rostgaard, J J Mortensen, J Chen, M Dułak, L Ferrighi, J Gavnholt, C Glinsvad, V Haikola, H A Hansen, H H Kristoffersen, M Kuisma, A H Larsen, L Lehtovaara, M Ljungberg, O Lopez-Acevedo, P G Moses, J Ojanen, T Olsen, V Petzold, N A Romero, J Stausholm-Møller, M Strange, G A Tritsaris, M Vanin, M Walter, B Hammer, H Häkkinen, G K H Madsen, R M Nieminen, J K Nørskov, M Puska, T T Rantala, J Schiøtz, K S Thygesen,  and K W Jacobsen, “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method,” Journal of Physics: Condensed Matter 22, 253202 (2010).
  324. Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune Christensen, Marcin Dułak, Jesper Friis, Michael N Groves, Bjørk Hammer, Cory Hargus, Eric D Hermes, Paul C Jennings, Peter Bjerre Jensen, James Kermode, John R Kitchin, Esben Leonhard Kolsbjerg, Joseph Kubal, Kristen Kaasbjerg, Steen Lysgaard, Jón Bergmann Maronsson, Tristan Maxson, Thomas Olsen, Lars Pastewka, Andrew Peterson, Carsten Rostgaard, Jakob Schiøtz, Ole Schütt, Mikkel Strange, Kristian S Thygesen, Tejs Vegge, Lasse Vilhelmsen, Michael Walter, Zhenhua Zeng,  and Karsten W Jacobsen, “The atomic simulation environment—a Python library for working with atoms,” Journal of Physics: Condensed Matter 29, 273002 (2017).
  325. S. R. Bahn and K. W. Jacobsen, “An object-oriented scripting interface to a legacy electronic structure code,” Computing in Science & Engineering 4, 56–66 (2002).
  326. Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila Dabo, Andrea Dal Corso, Stefano de Gironcoli, Stefano Fabris, Guido Fratesi, Ralph Gebauer, Uwe Gerstmann, Christos Gougoussis, Anton Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola Marzari, Francesco Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo Pasquarello, Lorenzo Paulatto, Carlo Sbraccia, Sandro Scandolo, Gabriele Sclauzero, Ari P Seitsonen, Alexander Smogunov, Paolo Umari,  and Renata M Wentzcovitch, “Quantum espresso: a modular and open-source software project for quantum simulations of materials,” Journal of Physics: Condensed Matter 21, 395502 (2009).
  327. P Giannozzi, O Andreussi, T Brumme, O Bunau, M Buongiorno Nardelli, M Calandra, R Car, C Cavazzoni, D Ceresoli, M Cococcioni, N Colonna, I Carnimeo, A Dal Corso, S de Gironcoli, P Delugas, R A DiStasio, A Ferretti, A Floris, G Fratesi, G Fugallo, R Gebauer, U Gerstmann, F Giustino, T Gorni, J Jia, M Kawamura, H-Y Ko, A Kokalj, E Küçükbenli, M Lazzeri, M Marsili, N Marzari, F Mauri, N L Nguyen, H-V Nguyen, A Otero de-la Roza, L Paulatto, S Poncé, D Rocca, R Sabatini, B Santra, M Schlipf, A P Seitsonen, A Smogunov, I Timrov, T Thonhauser, P Umari, N Vast, X Wu,  and S Baroni, “Advanced capabilities for materials modelling with quantum espresso,” Journal of Physics: Condensed Matter 29, 465901 (2017).
  328. Xavier Gonze, Bernard Amadon, Gabriel Antonius, Frédéric Arnardi, Lucas Baguet, Jean-Michel Beuken, Jordan Bieder, François Bottin, Johann Bouchet, Eric Bousquet, Nils Brouwer, Fabien Bruneval, Guillaume Brunin, Théo Cavignac, Jean-Baptiste Charraud, Wei Chen, Michel Côté, Stefaan Cottenier, Jules Denier, Grégory Geneste, Philippe Ghosez, Matteo Giantomassi, Yannick Gillet, Olivier Gingras, Donald R. Hamann, Geoffroy Hautier, Xu He, Nicole Helbig, Natalie Holzwarth, Yongchao Jia, François Jollet, William Lafargue-Dit-Hauret, Kurt Lejaeghere, Miguel A. L. Marques, Alexandre Martin, Cyril Martins, Henrique P. C. Miranda, Francesco Naccarato, Kristin Persson, Guido Petretto, Valentin Planes, Yann Pouillon, Sergei Prokhorenko, Fabio Ricci, Gian-Marco Rignanese, Aldo H. Romero, Michael Marcus Schmitt, Marc Torrent, Michiel J. van Setten, Benoit Van Troeye, Matthieu J. Verstraete, Gilles Zérah,  and Josef W. Zwanziger, “The abinit project: Impact, environment and recent developments,” Comput. Phys. Commun. 248, 107042 (2020).
  329. Aldo H. Romero, Douglas C. Allan, Bernard Amadon, Gabriel Antonius, Thomas Applencourt, Lucas Baguet, Jordan Bieder, François Bottin, Johann Bouchet, Eric Bousquet, Fabien Bruneval, Guillaume Brunin, Damien Caliste, Michel Côté, Jules Denier, Cyrus Dreyer, Philippe Ghosez, Matteo Giantomassi, Yannick Gillet, Olivier Gingras, Donald R. Hamann, Geoffroy Hautier, François Jollet, Gérald Jomard, Alexandre Martin, Henrique P. C. Miranda, Francesco Naccarato, Guido Petretto, Nicholas A. Pike, Valentin Planes, Sergei Prokhorenko, Tonatiuh Rangel, Fabio Ricci, Gian-Marco Rignanese, Miquel Royo, Massimiliano Stengel, Marc Torrent, Michiel J. van Setten, Benoit Van Troeye, Matthieu J. Verstraete, Julia Wiktor, Josef W. Zwanziger,  and Xavier Gonze, “Abinit: Overview, and focus on selected capabilities,” J. Chem. Phys. 152, 124102 (2020).
  330. X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D.R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M.J.T. Oliveira, S. Poncé, Y. Pouillon, T. Rangel, G.-M. Rignanese, A.H. Romero, B. Rousseau, O. Rubel, A.A. Shukri, M. Stankovski, M. Torrent, M.J. Van Setten, B. Van Troeye, M.J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou,  and J.W. Zwanziger, “Recent developments in the ABINIT software package,” Comput. Phys. Commun. 205, 106–131 (2016).
  331. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah,  and J.W. Zwanziger, “ABINIT: First-principles approach to material and nanosystem properties,” Comput. Phys. Commun. 180, 2582–2615 (2009).
  332. X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida,  and D.R. Hamann D.C. Allan, “A brief introduction to the ABINIT software package,” Zeitschrift für Kristallographie - Crystalline Materials 220, 558–562 (2005).
  333. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty,  and D.C. Allan, “First-principles computation of material properties: The ABINIT software project,” Computational Materials Science 25, 478–492 (2002).
  334. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, 558–561 (1993).
  335. G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium,” Phys. Rev. B 49, 14251–14269 (1994).
  336. Georg Kresse and Jürgen Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical review B 54, 11169 (1996a).
  337. Georg Kresse and Jürgen Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational materials science 6, 15–50 (1996b).
  338. Valentin V. Karasiev, Travis Sjostrom,  and S. B. Trickey, “Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations,” Phys. Rev. B 86, 115101 (2012).
  339. Valentin V. Karasiev, Debajit Chakraborty, Olga A. Shukruto,  and S. B. Trickey, “Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations,” Phys. Rev. B 88, 161108 (2013).
  340. Travis Sjostrom and Jérôme Daligault, “Nonlocal orbital-free noninteracting free-energy functional for warm dense matter,” Phys. Rev. B 88, 195103 (2013).
  341. K. Luo, V. V. Karasiev,  and S. B. Trickey, “Towards accurate orbital-free simulations: A generalized gradient approximation for the noninteracting free energy density functional,” Phys. Rev. B 101, 075116 (2020).
  342. Zhandos A. Moldabekov, Xuecheng Shao, Michele Pavanello, Jan Vorberger, Frank Graziani,  and Tobias Dornheim, “Imposing correct jellium response is key to predict the density response by orbital-free dft,” Phys. Rev. B 108, 235168 (2023b).
  343. Deyan I. Mihaylov, S.X. Hu,  and Valentin V. Karasiev, “Dragon: A multi-gpu orbital-free density functional theory molecular dynamics simulation package for modeling of warm dense matter,” Computer Physics Communications 294, 108931 (2024).
  344. Wenhui Mi, Kai Luo, S. B. Trickey,  and Michele Pavanello, “Orbital-free density functional theory: An attractive electronic structure method for large-scale first-principles simulations,” Chemical Reviews 123, 12039–12104 (2023), pMID: 37870767.
  345. Valentin V. Karasiev, Travis Sjostrom,  and S.B. Trickey, “Finite-temperature orbital-free dft molecular dynamics: Coupling profess and quantum espresso,” Computer Physics Communications 185, 3240–3249 (2014b).
  346. Lenz Fiedler, Zhandos A. Moldabekov, Xuecheng Shao, Kaili Jiang, Tobias Dornheim, Michele Pavanello,  and Attila Cangi, “Accelerating equilibration in first-principles molecular dynamics with orbital-free density functional theory,” Phys. Rev. Research 4, 043033 (2022b).
  347. D. I. Mihaylov, V. V. Karasiev, S. X. Hu, J. R. Rygg, V. N. Goncharov,  and G. W. Collins, “Improved first-principles equation-of-state table of deuterium for high-energy-density applications,” Phys. Rev. B 104, 144104 (2021).
  348. Xuecheng Shao, Kaili Jiang, Wenhui Mi, Alessandro Genova,  and Michele Pavanello, “DFTpy: An efficient and object-oriented platform for orbital-free DFT simulations,” Wiley Interdiscip. Rev. Comput. Mol. Sci. 11, e1482 (2021).
  349. A. Blanchet, M. Torrent,  and J. Clérouin, “Requirements for very high temperature Kohn–Sham DFT simulations and how to bypass them,” Physics of Plasmas 27, 122706 (2020).
  350. Mohamed Hacene, Ani Anciaux-Sedrakian, Xavier Rozanska, Diego Klahr, Thomas Guignon,  and Paul Fleurat-Lessard, “Accelerating VASP electronic structure calculations using graphic processing units,” J. Comput. Chem. 33, 2581–2589 (2012).
  351. M. Hutchinson and M. Widom, “VASP on a GPU: Application to exact-exchange calculations of the stability of elemental boron,” Comput. Phys. Commun. 183, 1422–1426 (2012).
  352. Shen Zhang, Hongwei Wang, Wei Kang, Ping Zhang,  and X. T. He, “Extended application of kohn-sham first-principles molecular dynamics method with plane wave approximation at high energy—from cold materials to hot dense plasmas,” Physics of Plasmas 23, 042707 (2016).
  353. A. Blanchet, J. Clérouin, M. Torrent,  and F. Soubiran, “Extended first-principles molecular dynamics model for high temperature simulations in the Abinit code: Application to warm dense aluminum,” Computer Physics Communications 271, 108215 (2022).
  354. P. Hollebon and T. Sjostrom, “Hybrid Kohn-Sham+Thomas-FermiKohn-ShamThomas-Fermi\text{Kohn-Sham}+\text{Thomas-Fermi}Kohn-Sham + Thomas-Fermi scheme for high-temperature density functional theory,” Phys. Rev. B 105, 235114 (2022).
  355. Yael Cytter, Eran Rabani, Daniel Neuhauser,  and Roi Baer, “Stochastic density functional theory at finite temperatures,” Phys. Rev. B 97, 115207 (2018).
  356. Roi Baer, Daniel Neuhauser,  and Eran Rabani, “Self-averaging stochastic kohn-sham density-functional theory,” Phys. Rev. Lett. 111, 106402 (2013).
  357. Marcel D. Fabian, Ben Shpiro, Eran Rabani, Daniel Neuhauser,  and Roi Baer, “Stochastic density functional theory,” WIREs Computational Molecular Science 9, e1412 (2019).
  358. A. J. White and L. A. Collins, “Fast and universal kohn-sham density functional theory algorithm for warm dense matter to hot dense plasma,” Phys. Rev. Lett. 125, 055002 (2020).
  359. Tao Chen, Qianrui Liu, Yu Liu, Liang Sun,  and Mohan Chen, “Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter,” Matter and Radiation at Extremes 9, 015604 (2024).
  360. D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45, 566–569 (1980).
  361. J. P. Perdew and Alex Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079 (1981).
  362. S. H. Vosko, L. Wilk,  and M. Nusair, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis,” Canadian Journal of Physics 58, 1200–1211 (1980).
  363. John P. Perdew, Kieron Burke,  and Matthias Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996a).
  364. John P. Perdew, Adrienn Ruzsinszky, Gábor I. Csonka, Oleg A. Vydrov, Gustavo E. Scuseria, Lucian A. Constantin, Xiaolan Zhou,  and Kieron Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100, 136406 (2008).
  365. Mel Levy, “Asymptotic coordinate scaling bound for exchange-correlation energy in density-functional theory,” International Journal of Quantum Chemistry 36, 617–619 (1989).
  366. Jianwei Sun, Adrienn Ruzsinszky,  and John P. Perdew, “Strongly constrained and appropriately normed semilocal density functional,” Phys. Rev. Lett. 115, 036402 (2015).
  367. Jochen Heyd, Gustavo E. Scuseria,  and Matthias Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” The Journal of Chemical Physics 118, 8207–8215 (2003).
  368. John P. Perdew and Karla Schmidt, “Jacob’s ladder of density functional approximations for the exchange-correlation energy,” AIP Conference Proceedings 577, 1–20 (2001).
  369. Miguel A.L. Marques, Micael J.T. Oliveira,  and Tobias Burnus, “Libxc: A library of exchange and correlation functionals for density functional theory,” Computer Physics Communications 183, 2272–2281 (2012).
  370. Susi Lehtola, Conrad Steigemann, Micael J.T. Oliveira,  and Miguel A.L. Marques, “Recent developments in libxc — a comprehensive library of functionals for density functional theory,” SoftwareX 7, 1–5 (2018).
  371. Travis Sjostrom and Jérôme Daligault, “Gradient corrections to the exchange-correlation free energy,” Phys. Rev. B 90, 155109 (2014).
  372. John Kozlowski, Dennis Perchak,  and Kieron Burke, “Generalized gradient approximation made thermal,”  (2023).
  373. Valentin V. Karasiev, James W. Dufty,  and S. B. Trickey, “Nonempirical semilocal free-energy density functional for matter under extreme conditions,” Phys. Rev. Lett. 120, 076401 (2018).
  374. John P. Perdew, Matthias Ernzerhof,  and Kieron Burke, “Rationale for mixing exact exchange with density functional approximations,” The Journal of Chemical Physics 105, 9982–9985 (1996b).
  375. D. I. Mihaylov, V. V. Karasiev,  and S. X. Hu, “Thermal hybrid exchange-correlation density functional for improving the description of warm dense matter,” Phys. Rev. B 101, 245141 (2020).
  376. R. M. N. Goshadze, Valentin V. Karasiev, D. I. Mihaylov,  and S. X. Hu, “Shock-induced metallization of polystyrene along the principal hugoniot investigated by advanced thermal density functionals,” Phys. Rev. B 107, 155116 (2023).
  377. L. H. Thomas, “The calculation of atomic fields,” Mathematical Proceedings of the Cambridge Philosophical Society 23, 542–548 (1927).
  378. E. Fermi, “Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente,” Zeitschrift fur Physik 48, 73–79 (1928).
  379. David A. Liberman, “Self-consistent field model for condensed matter,” Phys. Rev. B 20, 4981–4989 (1979).
  380. M. W. C. Dharma-wardana and Fran çois Perrot, “Density-functional theory of hydrogen plasmas,” Phys. Rev. A 26, 2096–2104 (1982).
  381. B. Wilson, V. Sonnad, P. Sterne,  and W. Isaacs, “Purgatorio: a new implementation of the inferno algorithm,” Journal of Quantitative Spectroscopy and Radiative Transfer 99, 658–679 (2006), radiative Properties of Hot Dense Matter.
  382. T. J. Callow, S. B. Hansen, E. Kraisler,  and A. Cangi, “First-principles derivation and properties of density-functional average-atom models,” Phys. Rev. Research 4, 023055 (2022).
  383. M. W. C. Dharma-wardana, “Electron-ion and ion-ion potentials for modeling warm dense matter: Applications to laser-heated or shock-compressed al and si,” Phys. Rev. E 86, 036407 (2012).
  384. CE Starrett and D Saumon, “Fully variational average atom model with ion-ion correlations,” Physical Review E 85, 026403 (2012).
  385. CE Starrett and D Saumon, “A simple method for determining the ionic structure of warm dense matter,” High Energy Density Physics 10, 35 (2014).
  386. Gérald Faussurier, Christophe Blancard, Philippe Cossé,  and Patrick Renaudin, “Equation of state, transport coefficients, and stopping power of dense plasmas from the average-atom model self-consistent approach for astrophysical and laboratory plasmas,” Physics of Plasmas 17, 052707 (2010).
  387. P.A. Sterne, Stephanie Hansen, Brian Wilson,  and W.A. Isaacs, “Equation of state, occupation probabilities and conductivities in the average atom purgatorio code,” High Energy Density Physics 3, 278–282 (2007).
  388. D.J. Burrill, D.V. Feinblum, M.R.J. Charest,  and C.E. Starrett, “Comparison of electron transport calculations in warm dense matter using the ziman formula,” High Energy Density Physics 19, 1–10 (2016).
  389. W.R. Johnson, C. Guet,  and G.F. Bertsch, “Optical properties of plasmas based on an average-atom model,” Journal of Quantitative Spectroscopy and Radiative Transfer 99, 327–340 (2006), radiative Properties of Hot Dense Matter.
  390. W. R. Johnson, J. Nilsen,  and K. T. Cheng, “Thomson scattering in the average-atom approximation,” Phys. Rev. E 86, 036410 (2012).
  391. A. N. Souza, D. J. Perkins, C. E. Starrett, D. Saumon,  and S. B. Hansen, “Predictions of x-ray scattering spectra for warm dense matter,” Phys. Rev. E 89, 023108 (2014).
  392. Gérald Faussurier and Christophe Blancard, “Density effects on electronic configurations in dense plasmas,” Phys. Rev. E 97, 023206 (2018).
  393. S. B. Hansen, “Self-consistent and detailed opacities from a non-equilibrium average-atom model,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381, 20220212 (2023).
  394. D. M. Ceperley, “Path integrals in the theory of condensed helium,” Rev. Mod. Phys 67, 279 (1995a).
  395. M. F. Herman, E. J. Bruskin,  and B. J. Berne, “On path integral monte carlo simulations,” The Journal of Chemical Physics 76, 5150–5155 (1982).
  396. Minoru Takahashi and Masatoshi Imada, “Monte carlo calculation of quantum systems,” Journal of the Physical Society of Japan 53, 963–974 (1984).
  397. M. Boninsegni, N. V. Prokofev,  and B. V. Svistunov, “Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations,” Phys. Rev. E 74, 036701 (2006b).
  398. David M. Ceperley and B. J. Alder, “Ground state of solid hydrogen at high pressures,” Physical Review B 36, 2092–2106 (1987).
  399. G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2008).
  400. B. Militzer, “Computation of the high temperature coulomb density matrix in periodic boundary conditions,” Computer Physics Communications 204, 88–96 (2016).
  401. Louisa M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny,  and A. J. Williamson, “Finite-size effects and coulomb interactions in quantum monte carlo calculations for homogeneous systems with periodic boundary conditions,” Phys. Rev. B 53, 1814–1832 (1996).
  402. Hans De Raedt and Bart De Raedt, “Applications of the generalized trotter formula,” Phys. Rev. A 28, 3575–3580 (1983).
  403. K. Sakkos, J. Casulleras,  and J. Boronat, “High order chin actions in path integral monte carlo,” The Journal of Chemical Physics 130, 204109 (2009).
  404. Robert E. Zillich, Johannes M. Mayrhofer,  and Siu A. Chin, “Extrapolated high-order propagators for path integral monte carlo simulations,” The Journal of Chemical Physics 132, 044103 (2010).
  405. Siu A. Chin, “High-order path-integral monte carlo methods for solving quantum dot problems,” Phys. Rev. E 91, 031301 (2015).
  406. Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller,  and Edward Teller, “Equation of state calculations by fast computing machines,” The Journal of Chemical Physics 21, 1087–1092 (1953).
  407. M. Bonitz and D. Semkat, “Generalized quantum kinetic equations,” in Introduction to Computational Methods in Many Body Physics, edited by M. Bonitz and D. Semkat (Rinton Press, Princeton, 2006) pp. 94–102.
  408. Tobias Dornheim, Maximilian Böhme, Burkhard Militzer,  and Jan Vorberger, “Ab initio path integral monte carlo approach to the momentum distribution of the uniform electron gas at finite temperature without fixed nodes,” Phys. Rev. B 103, 205142 (2021d).
  409. G. Ferré and J. Boronat, “Dynamic structure factor of liquid He4superscriptHe4{}^{4}\mathrm{He}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He across the normal-superfluid transition,” Phys. Rev. B 93, 104510 (2016).
  410. E. L. Pollock and D. M. Ceperley, “Path-integral computation of superfluid densities,” Phys. Rev. Lett 36, 8343 (1987).
  411. Bryan K. Clark, Michele Casula,  and D. M. Ceperley, “Hexatic and mesoscopic phases in a 2d quantum coulomb system,” Phys. Rev. Lett. 103, 055701 (2009).
  412. Dornheim T., Thomsen H., Ludwig P., Filinov A.,  and Bonitz M., “Analyzing quantum correlations made simple,” Contrib. Plasma Phys. 56, 371–379 (2016).
  413. Tobias Dornheim, “Path-integral monte carlo simulations of quantum dipole systems in traps: Superfluidity, quantum statistics, and structural properties,” Phys. Rev. A 102, 023307 (2020).
  414. D.M. Ceperley, “Path Integral Monte Carlo Methods for Fermions,” in Monte Carlo and Molecular Dynamics of Condensed Matter Systems (Compositori, 1996) pp. 1–23.
  415. K. P. Driver and B. Militzer, “All-electron path integral monte carlo simulations of warm dense matter: Application to water and carbon plasmas,” Phys. Rev. Lett. 108, 115502 (2012).
  416. N. S. Blunt, T. W. Rogers, J. S. Spencer,  and W. M. C. Foulkes, “Density-matrix quantum monte carlo method,” Phys. Rev. B 89, 245124 (2014).
  417. Fionn D. Malone, N. S. Blunt, James J. Shepherd, D. K. K. Lee, J. S. Spencer,  and W. M. C. Foulkes, “Interaction picture density matrix quantum monte carlo,” The Journal of Chemical Physics 143, 044116 (2015).
  418. Fionn D. Malone, N. S. Blunt, Ethan W. Brown, D. K. K. Lee, J. S. Spencer, W. M. C. Foulkes,  and James J. Shepherd, “Accurate exchange-correlation energies for the warm dense electron gas,” Phys. Rev. Lett. 117, 115701 (2016).
  419. Arif Yilmaz, Kai Hunger, Tobias Dornheim, Simon Groth,  and Michael Bonitz, “Restricted configuration path integral Monte Carlo,” J. Chem. Phys. 153, 124114 (2020).
  420. Tong Shen, Yuan Liu, Yang Yu,  and Brenda M. Rubenstein, “Finite temperature auxiliary field quantum monte carlo in the canonical ensemble,” The Journal of Chemical Physics 153, 204108 (2020).
  421. Barak Hirshberg, Michele Invernizzi,  and Michele Parrinello, “Path integral molecular dynamics for fermions: Alleviating the sign problem with the bogoliubov inequality,” The Journal of Chemical Physics 152, 171102 (2020).
  422. Tobias Dornheim, Michele Invernizzi, Jan Vorberger,  and Barak Hirshberg, “Attenuating the fermion sign problem in path integral monte carlo simulations using the bogoliubov inequality and thermodynamic integration,” The Journal of Chemical Physics 153, 234104 (2020c).
  423. Joonho Lee, Miguel A. Morales,  and Fionn D. Malone, “A phaseless auxiliary-field quantum monte carlo perspective on the uniform electron gas at finite temperatures: Issues, observations, and benchmark study,” The Journal of Chemical Physics 154, 064109 (2021).
  424. Tobias Dornheim, Panagiotis Tolias, Simon Groth, Zhandos A. Moldabekov, Jan Vorberger,  and Barak Hirshberg, “Fermionic physics from ab initio path integral Monte Carlo simulations of fictitious identical particles,” The Journal of Chemical Physics 159, 164113 (2023e).
  425. Tobias Dornheim, Sebastian Schwalbe, Zhandos Moldabekov, Jan Vorberger,  and Panagiotis Tolias, “Ab initio path integral monte carlo simulations of the uniform electron gas on large length scales,” The Journal of Physical Chemistry Letters  (2023f).
  426. Kai Hunger, Tim Schoof, Tobias Dornheim, Michael Bonitz,  and Alexey Filinov, “Momentum distribution function and short-range correlations of the warm dense electron gas: Ab initio quantum monte carlo results,” Phys. Rev. E 103, 053204 (2021).
  427. Ethan W. Brown, Jonathan L. DuBois, Markus Holzmann,  and David M. Ceperley, “Exchange-correlation energy for the three-dimensional homogeneous electron gas at arbitrary temperature,” Phys. Rev. B 88, 081102 (2013b).
  428. James J. Shepherd, George H. Booth,  and Ali Alavi, “Investigation of the full configuration interaction quantum Monte Carlo method using homogeneous electron gas models,” The Journal of Chemical Physics 136, 244101 (2012).
  429. Michele Ruggeri, Pablo López Ríos,  and Ali Alavi, “Correlation energies of the high-density spin-polarized electron gas to mev accuracy,” Phys. Rev. B 98, 161105 (2018).
  430. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw Hill, 1965).
  431. B. Militzer and D. M. Ceperley, Phys. Rev. E 63, 066404 (2001b).
  432. Burkhard Militzer and Kevin P. Driver, “Development of path integral monte carlo simulations with localized nodal surfaces for second-row elements,” Phys. Rev. Lett. 115, 176403 (2015).
  433. D. M. Ceperley, J. Stat. Phys. 63, 1237 (1991b).
  434. C. Pierleoni, D. M. Ceperley, B. Bernu,  and W. R. Magro, “Equation of state of the hydrogen plasma by path integral monte carlo simulation,” Phys. Rev. Lett. 73, 2145–2149 (1994b).
  435. B. Militzer, “First principles calculations of shock compressed fluid helium,” Phys. Rev. Lett. 97, 175501 (2006).
  436. B. Militzer, “Path integral monte carlo and density functional molecular dynamics simulations of hot, dense helium,” Phys. Rev. B 79, 155105 (2009).
  437. Shuai Zhang, Burkhard Militzer, Michelle C. Gregor, Kyle Caspersen, Lin H. Yang, Jim Gaffney, Tadashi Ogitsu, Damian Swift, Amy Lazicki, D. Erskine, Richard A. London, P. M. Celliers, Joseph Nilsen, Philip A. Sterne,  and Heather D. Whitley, “Theoretical and experimental investigation of the equation of state of boron plasmas,” Phys. Rev. E 98, 023205 (2018).
  438. K. P. Driver and B. Militzer, “First-principles equation of state calculations of warm dense nitrogen,” Phys. Rev. B 93, 064101 (2016).
  439. Kevin P. Driver, François Soubiran, Shuai Zhang,  and Burkhard Militzer, “First-principles equation of state and electronic properties of warm dense oxygen,” J. Chem. Phys. 143, 164507 (2015).
  440. K. P. Driver and B. Militzer, “First-principles simulations and shock Hugoniot calculations of warm dense neon,” Phys. Rev. B 91, 045103 (2015).
  441. Shuai Zhang, Kevin P. Driver, François Soubiran,  and Burkhard Militzer, “First-principles equation of state and shock compression predictions of warm dense hydrocarbons,” Phys. Rev. E 96, 013204 (2017a).
  442. Shuai Zhang, Kevin P. Driver, François Soubiran,  and Burkhard Militzer, “Equation of state and shock compression of warm dense sodium—A first-principles study,” J. Chem. Phys. 146, 074505 (2017b).
  443. Kevin P. Driver, François Soubiran,  and Burkhard Militzer, “Path integral Monte Carlo simulations of warm dense aluminum,” Phys. Rev. E 97, 063207 (2018).
  444. Felipe González-Cataldo, François Soubiran, Henry Peterson,  and Burkhard Militzer, “Path integral Monte Carlo and density functional molecular dynamics simulations of warm dense MgSiO3,” Physical Review B 101, 024107 (2020).
  445. Felipe González-Cataldo, François Soubiran,  and Burkhard Militzer, “Equation of state of hot, dense magnesium derived with first-principles computer simulations,” Physics of Plasmas 27 (2020).
  446. Burkhard Militzer, Felipe González-Cataldo, Shuai Zhang, Heather D Whitley, Damian C Swift,  and Marius Millot, “Nonideal mixing effects in warm dense matter studied with first-principles computer simulations,” The Journal of Chemical Physics 153 (2020).
  447. E. L. Pollock, Comp. Phys. Comm. 52 , 49 (1988).
  448. D. M. Ceperley, “Path integrals in the theory of condensed helium,” Reviews of Modern Physics 67, 279–355 (1995b).
  449. G. Kelbg, “Theorie des Quanten-Plasmas,” Annalen der Physik 467, 219–224 (1963a).
  450. G. Kelbg, “Quantenstatistik der Gase mit Coulomb-Wechselwirkung,” Annalen der Physik 467, 354–360 (1963b).
  451. A. Filinov, M. Bonitz,  and W. Ebeling, “Improved Kelbg potential for correlated Coulomb systems,” J. Phys. A: Math. Gen. 36, 5957–5962 (2003b).
  452. A. V. Filinov, V. O. Golubnychiy, M. Bonitz, W. Ebeling,  and J. W. Dufty, “Temperature-dependent quantum pair potentials and their application to dense partially ionized hydrogen plasmas,” Phys. Rev. E 70, 046411 (2004).
  453. J.N. Glosli, F.R. Graziani, R.M. More, M.S. Murillo, F.H. Streitz, M.P. Surh, L.X. Benedict, S. Hau-Riege, A.B. Langdon,  and R.A. London, “Molecular dynamics simulations of temperature equilibration in dense hydrogen,” Phys. Rev. E 78, 025401 (2008).
  454. Frank R. Graziani, Victor S. Batista, Lorin X. Benedict, John I. Castor, Hui Chen, Sophia N. Chen, Chris A. Fichtl, James N. Glosli, Paul E. Grabowski, Alexander T. Graf, Stefan P. Hau-Riege, Andrew U. Hazi, Saad A. Khairallah, Liam Krauss, A. Bruce Langdon, Richard A. London, Andreas Markmann, Michael S. Murillo, David F. Richards, Howard A. Scott, Ronnie Shepherd, Liam G. Stanton, Fred H. Streitz, Michael P. Surh, Jon C. Weisheit,  and Heather D. Whitley, “Large-scale molecular dynamics simulations of dense plasmas: The cimarron project,” High Energy Density Physics 8, 105–131 (2012).
  455. T. Dornheim, S. Groth, A. V. Filinov,  and M. Bonitz, “Path integral monte carlo simulation of degenerate electrons: Permutation-cycle properties,” The Journal of Chemical Physics 151, 014108 (2019c).
  456. Elliott H. Lieb, “The stability of matter,” Rev. Mod. Phys. 48, 553–569 (1976).
  457. Yunuo Xiong and Hongwei Xiong, “On the thermodynamic properties of fictitious identical particles and the application to fermion sign problem,” The Journal of Chemical Physics 157, 094112 (2022).
  458. Alexander P Lyubartsev, “Simulation of excited states and the sign problem in the path integral monte carlo method,” Journal of Physics A: Mathematical and General 38, 6659 (2005).
  459. Siu A. Chin and C. R. Chen, “Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials,” The Journal of Chemical Physics 117, 1409–1415 (2002).
  460. E. Prodan and W. Kohn, “Nearsightedness of electronic matter,” Proceedings of the National Academy of Sciences 102, 11635–11638 (2005).
  461. Burkhard Militzer, Felipe González-Cataldo, Shuai Zhang, Kevin P. Driver,  and Fran çois Soubiran, “First-principles equation of state database for warm dense matter computation,” Phys. Rev. E 103, 013203 (2021b).
  462. Yunuo Xiong and Hongwei Xiong, “Thermodynamics of fermions at any temperature based on parametrized partition function,” Phys. Rev. E 107, 055308 (2023).
  463. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, International series of monographs on physics (Clarendon Press, 1988).
  464. Dominik Marx and Jurg Hutter, Ab Initio Molecular Dynamics (Cambridge University Press, Cambridge, 2009).
  465. D. M. Ceperley and M. Dewing, “The penalty method for random walks with uncertain energies,” The Journal of Chemical Physics 110, 9812–9820 (1999).
  466. M. Holzmann, D. M. Ceperley, C. Pierleoni,  and K. Esler, “Backflow correlations for the electron gas and metallic hydrogen,” Physical Review E 68, 046707 (2003).
  467. Carlo Pierleoni, Kris T. Delaney, Miguel A. Morales, David M. Ceperley,  and Markus Holzmann, “Trial wave functions for high-pressure metallic hydrogen,” Computer Physics Communications 179, 89–97 (2008).
  468. Stefano Baroni and Saverio Moroni, “Reptation quantum monte carlo: A method for unbiased ground-state averages and imaginary-time correlations,” Phys. Rev. Lett. 82, 4745–4748 (1999).
  469. Raymond C. Clay, Michael P. Desjarlais,  and Luke Shulenburger, “Deuterium hugoniot: Pitfalls of thermodynamic sampling beyond density functional theory,” Phys. Rev. B 100, 075103 (2019).
  470. C. Lin, F. H. Zong,  and D. M. Ceperley, “Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms,” Physical Review E 64, 016702 (2001).
  471. Markus Holzmann, Raymond C. Clay, Miguel A. Morales, Norm M. Tubman, David M. Ceperley,  and Carlo Pierleoni, “Theory of finite size effects for electronic quantum Monte Carlo calculations of liquids and solids,” Physical Review B 94, 035126 (2016b).
  472. Michele Taddei, Michele Ruggeri, Saverio Moroni,  and Markus Holzmann, “Iterative backflow renormalization procedure for many-body ground-state wave functions of strongly interacting normal fermi liquids,” Phys. Rev. B 91, 115106 (2015).
  473. Markus Holzmann and Saverio Moroni, “Orbital-dependent backflow wave functions for real-space quantum monte carlo,” Phys. Rev. B 99, 085121 (2019).
  474. Markus Holzmann and Saverio Moroni, “Itinerant-electron magnetism: The importance of many-body correlations,” Phys. Rev. Lett. 124, 206404 (2020).
  475. Max Wilson, Saverio Moroni, Markus Holzmann, Nicholas Gao, Filip Wudarski, Tejs Vegge,  and Arghya Bhowmik, “Neural network ansatz for periodic wave functions and the homogeneous electron gas,” Phys. Rev. B 107, 235139 (2023).
  476. Hao Xie, Zi-Hang Li, Han Wang, Linfeng Zhang,  and Lei Wang, “Deep variational free energy approach to dense hydrogen,” Phys. Rev. Lett. 131, 126501 (2023).
  477. Gino Cassella, Halvard Sutterud, Sam Azadi, N. D. Drummond, David Pfau, James S. Spencer,  and W. M. C. Foulkes, “Discovering quantum phase transitions with fermionic neural networks,” Phys. Rev. Lett. 130, 036401 (2023).
  478. Gabriel Pescia, Jannes Nys, Jane Kim, Alessandro Lovato,  and Giuseppe Carleo, “Message-passing neural quantum states for the homogeneous electron gas,”   (2023), arXiv:2305.07240 [quant-ph] .
  479. James J. Shepherd and Andreas Grüneis, “Many-body quantum chemistry for the electron gas: Convergent perturbative theories,” Phys. Rev. Lett. 110, 226401 (2013).
  480. Carlo Pierleoni, Giovanni Rillo, David M. Ceperley,  and Markus Holzmann, “Electron localization properties in high pressure hydrogen at the liquid-liquid phase transition by Coupled Electron-Ion Monte Carlo,” Journal of Physics: Conference Series 1136 (2018b), 10.1088/1742-6596/1136/1/012005.
  481. Vitaly Gorelov, David M. Ceperley, Markus Holzmann,  and Carlo Pierleoni, “Electronic energy gap closure and metal-insulator transition in dense liquid hydrogen,” Physical Review B 102, 195133 (2020b).
  482. Yubo Yang, Vitaly Gorelov, Carlo Pierleoni, David M. Ceperley,  and Markus Holzmann, “Electronic band gaps from Quantum Monte Carlo methods,” Physical Review B 101, 85115 (2020a).
  483. Vitaly Gorelov, Markus Holzmann, David M. Ceperley,  and Carlo Pierleoni, “Energy Gap Closure of Crystalline Molecular Hydrogen with Pressure,” Phys. Rev. Lett. 124, 116401 (2020c).
  484. Vitaly Gorelov, Markus Holzmann, David M. Ceperley,  and Carlo Pierleoni, “Electronic excitation spectra of molecular hydrogen in phase i from quantum monte carlo and many-body perturbation methods,”   (2023a), arXiv:2311.08506 [cond-mat.mtrl-sci] .
  485. Vitaly Gorelov, David M. Ceperley, Markus Holzmann,  and Carlo Pierleoni, “Electronic structure and optical properties of quantum crystals from first principles calculations in the Born-Oppenheimer approximation,” J. Chem Phys 153, 234117 (2020d).
  486. Claudio Attaccalite and Sandro Sorella, “Stable liquid hydrogen at high pressure by a novel ab initio molecular-dynamics calculation,” Phys. Rev. Lett. 100, 114501 (2008).
  487. Guglielmo Mazzola, Seiji Yunoki,  and Sandro Sorella, “Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation,” Nature Communications 5, 1–6 (2014).
  488. Guglielmo Mazzola and Sandro Sorella, “Distinct metallization and atomization transitions in dense liquid hydrogen,” Physical Review Letters 114, 1–5 (2015).
  489. Guglielmo Mazzola and Sandro Sorella, “Accelerating ab initio molecular dynamics and probing the weak dispersive forces in dense liquid hydrogen,” Phys. Rev. Lett. 118, 015703 (2017).
  490. V. Filinov, P. Thomas, I. Varga, T. Meier, M. Bonitz, V. Fortov,  and S. W. Koch, “Interacting electrons in a one-dimensional random array of scatterers: A quantum dynamics and Monte Carlo study,” Phys. Rev. B 65, 165124 (2002).
  491. V S Filinov, P Thomas, I Varga, T Meier, M Bonitz, V E Fortov,  and S W Koch, “Electronic transport in a one-dimensional random array of scatterers,” J. Phys. A: Math. Gen. 36, 5905 (2003c).
  492. Jianshu Cao and Gregory A. Voth, “The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties,” The Journal of Chemical Physics 100, 5093–5105 (1994).
  493. E. A. Polyakov, A. P. Lyubartsev,  and P. N. Vorontsov-Velyaminov, “Centroid molecular dynamics: Comparison with exact results for model systems,” The Journal of Chemical Physics 133, 194103 (2010).
  494. Eric J Heller, “Time-dependent approach to semiclassical dynamics,” The Journal of Chemical Physics 62, 1544–1555 (1975).
  495. Caroline Lasser and Chunmei Su, “Various variational approximations of quantum dynamics,” Journal of Mathematical Physics 63 (2022).
  496. Paul E. Grabowski, “A review of wave packet molecular dynamics,” in Frontiers and Challenges in Warm Dense Matter, edited by Frank Graziani, Michael P. Desjarlais, Ronald Redmer,  and Samuel B. Trickey (Springer International Publishing, Cham, 2014) pp. 265–282.
  497. William A Angermeier and Thomas G White, “An investigation into the approximations used in wave packet molecular dynamics for the study of warm dense matter,” Plasma 4, 294–308 (2021).
  498. Pontus Svensson, Thomas Campbell, Frank Graziani, Zhandos Moldabekov, Ningyi Lyu, Victor S Batista, Scott Richardson, Sam M Vinko,  and Gianluca Gregori, “Development of a new quantum trajectory molecular dynamics framework,” Philosophical Transactions of the Royal Society A 381, 20220325 (2023).
  499. W Ebeling and B Militzer, “Quantum molecular dynamics of partially ionized plasmas,” Physics Letters A 226, 298–304 (1997).
  500. D Klakow, Ch Toepffer,  and P-G Reinhard, “Hydrogen under extreme conditions,” Physics Letters A 192, 55–59 (1994a).
  501. D Klakow, Ch Toepffer,  and P-G Reinhard, “Semiclassical molecular dynamics for strongly coupled coulomb systems,” The Journal of chemical physics 101, 10766–10774 (1994b).
  502. Julius T Su and William A Goddard III, “Excited electron dynamics modeling of warm dense matter,” Physical review letters 99, 185003 (2007).
  503. Julius T Su and William A Goddard III, “The dynamics of highly excited electronic systems: Applications of the electron force field,” The Journal of chemical physics 131, 244501 (2009).
  504. Andres Jaramillo-Botero, Julius Su, An Qi,  and William A Goddard III, “Large-scale, long-term nonadiabatic electron molecular dynamics for describing material properties and phenomena in extreme environments,” Journal of computational chemistry 32, 497–512 (2011).
  505. Yunpeng Yao, Qiyu Zeng, Ke Chen, Dongdong Kang, Yong Hou, Qian Ma,  and Jiayu Dai, “Reduced ionic diffusion by the dynamic electron–ion collisions in warm dense hydrogen,” Physics of Plasmas 28, 012704 (2021).
  506. William A Angermeier, Brett S Scheiner, Nathaniel R Shaffer,  and Thomas G White, “Disentangling the effects of non-adiabatic interactions upon ion self-diffusion within warm dense hydrogen,” Philosophical Transactions of the Royal Society A 381, 20230034 (2023).
  507. Qian Ma, Jiayu Dai, Dongdong Kang, MS Murillo, Yong Hou, Zengxiu Zhao,  and Jianmin Yuan, “Extremely low electron-ion temperature relaxation rates in warm dense hydrogen: Interplay between quantum electrons and coupled ions,” Physical review letters 122, 015001 (2019).
  508. Yun Liu, Xing Liu, Shen Zhang, Hao Liu, Chongjie Mo, Zhenguo Fu,  and Jiayu Dai, “Molecular dynamics investigation of the stopping power of warm dense hydrogen for electrons,” Physical Review E 103, 063215 (2021).
  509. B. Militzer and E. L. Pollock, “Variational density matrix method for warm, condensed matter: Application to dense hydrogen,” Phys. Rev. E 61, 3470 (2000b).
  510. Michael Knaup, PG Reinhard, C Toepffer,  and G Zwicknagel, “Wave packet molecular dynamics simulations of warm dense hydrogen,” Journal of Physics A: Mathematical and General 36, 6165 (2003).
  511. B Jakob, P-G Reinhard, C Toepffer,  and G Zwicknagel, “Wave packet simulation of dense hydrogen,” Physical Review E 76, 036406 (2007).
  512. B Jakob, PG Reinhard, C Toepffer,  and G Zwicknagel, “Wave packet simulations for the insulator–metal transition in dense hydrogen,” Journal of Physics A: Mathematical and Theoretical 42, 214055 (2009).
  513. Yaroslav S Lavrinenko, Igor V Morozov,  and Ilya A Valuev, “Wave packet molecular dynamics–density functional theory method for non-ideal plasma and warm dense matter simulations,” Contributions to Plasma Physics 59, e201800179 (2019).
  514. Ya S Lavrinenko, IV Morozov,  and IA Valuev, “High performance wave packet molecular dynamics with density functional exchange-correlation term for non-ideal plasma simulations,” Journal of Physics: Conference Series 1787, 012043 (2021b).
  515. Michael Knaup, P-G Reinhard,  and Ch Toepffer, “Wave packet molecular dynamics simulations of hydrogen near the transition to a metallic fluid,” Contributions to Plasma Physics 39, 57–60 (1999).
  516. Michael Knaup, P-G Reinhard,  and Christian Toepffer, “Wave packet molecular dynamics simulations of deuterium in the region of laser shock-wave experiments,” Contributions to plasma physics 41, 159–162 (2001).
  517. IV Morozov and IA Valuev, “Localization constraints in gaussian wave packet molecular dynamics of nonideal plasmas,” Journal of Physics A: Mathematical and Theoretical 42, 214044 (2009).
  518. Paul E Grabowski, Andreas Markmann, Igor V Morozov, Ilya A Valuev, Christopher A Fichtl, David F Richards, Victor S Batista, Frank R Graziani,  and Michael S Murillo, “Wave packet spreading and localization in electron-nuclear scattering,” Physical Review E 87, 063104 (2013).
  519. W Ebeling, A Filinov, M Bonitz, V Filinov,  and T Pohl, “The method of effective potentials in the quantum-statistical theory of plasmas,” Journal of Physics A: Mathematical and General 39, 4309 (2006).
  520. Ya S Lavrinenko, IV Morozov,  and IA Valuev, “Reflecting boundary conditions for classical and quantum molecular dynamics simulations of nonideal plasmas,” Contributions to Plasma Physics 56, 448–458 (2016).
  521. H. J. Hoffmann and G. Kelbg, “Density matrix and slater sums of interacting many-particle systems,” Ann. Physik 17, 356–367 (1966).
  522. C. Deutsch and M. Lavaud, “The partition function of a two-dimensional plasma,” Physics Letters A 39, 253–254 (1972).
  523. C. Deutsch, M.M. Gombert,  and H. Minoo, “Classical modelization of symmetry effects in the dense high-temperature electron gas,” Physics Letters A 66, 381–382 (1978).
  524. H. Minoo, M. M. Gombert,  and C. Deutsch, “Temperature-dependent coulomb interactions in hydrogenic systems,” Phys. Rev. A 23, 924–943 (1981).
  525. V.E. Fortov V.S. Filinov, M. Bonitz, “High density phenomena in hydrogen plasma,” JETP Lett. 72, 244 (2000).
  526. V S Filinov, M Bonitz, W Ebeling,  and V E Fortov, “Thermodynamics of hot dense H-plasmas: path integral Monte Carlo simulations and analytical approximations,” Plasma Phys. Control. Fusion 43, 743 (2001b).
  527. V. S. Filinov, Yu. B. Ivanov, V. E. Fortov, M. Bonitz,  and P. R. Levashov, “Color path-integral Monte-Carlo simulations of quark-gluon plasma: Thermodynamic and transport properties,” Phys. Rev. C 87, 035207 (2013).
  528. V.S. Filinov, M. Bonitz, Y.B. Ivanov, V.V. Skokov, P.R. Levashov,  and V.E. Fortov, “Equation of State of Strongly Coupled Quark–Gluon Plasma – Path Integral Monte Carlo Results,” Contrib. Plasma Phys. 49, 536–543 (2009).
  529. Filinov V. S., Bonitz M., Ivanov Y.B., Levashov P.R.,  and Fortov V.E., “Quantum Monte Carlo Simulations of Strongly Coupled Quark‐Gluon Plasma,” Contrib. Plasma Phys. 52, 135–139 (2012b).
  530. V. Golubnychiy, M. Bonitz, D. Kremp,  and M. Schlanges, “Plasmon Dispersion of a Weakly Degenerate Nonideal One-Component Plasma,” Contrib. Plasma Phys. 42, 37–41 (2002).
  531. V. Golubnychiy, M. Bonitz, D. Kremp,  and M. Schlanges, “Dynamical properties and plasmon dispersion of a weakly degenerate correlated one-component plasma,” Phys. Rev. E 64, 016409 (2001).
  532. M. Bonitz, D. Semkat, A. Filinov, V. Golubnychyi, D. Kremp, D. O. Gericke, M. S. Murillo, V. Filinov, V. Fortov, W. Hoyer,  and S. W. Koch, “Theory and simulation of strong correlations in quantum Coulomb systems,” J. Phys. A: Math. Gen. 36, 5921 (2003).
  533. Tobias Dornheim, Zhandos Moldabekov, Jan Vorberger, Hanno Kählert,  and Michael Bonitz, “Electronic pair alignment and roton feature in the warm dense electron gas,” Communications Physics 5, 304 (2022e).
  534. Sergei Izvekov, Michele Parrinello, Christian J. Burnham,  and Gregory A. Voth, “Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching,” The Journal of Chemical Physics 120, 10896–10913 (2004).
  535. Gergely Tóth, “Effective potentials from complex simulations: a potential-matching algorithm and remarks on coarse-grained potentials,” Journal of Physics: Condensed Matter 19, 335222 (2007).
  536. Omololu Akin-Ojo, Yang Song,  and Feng Wang, “Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method,” The Journal of Chemical Physics 129, 064108 (2008).
  537. J. Vorberger and D.O. Gericke, “Effective ion–ion potentials in warm dense matter,” High Energy Density Physics 9, 178–186 (2013).
  538. Jan H. Los, Luca M. Ghiringhelli, Evert Jan Meijer,  and A. Fasolino, “Improved long-range reactive bond-order potential for carbon. i. construction,” Phys. Rev. B 72, 214102 (2005).
  539. Jörg Behler and Michele Parrinello, “Generalized neural-network representation of high-dimensional potential-energy surfaces,” Phys. Rev. Lett. 98, 146401 (2007).
  540. Albert P. Bartók, Mike C. Payne, Risi Kondor,  and Gábor Csányi, “Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons,” Phys. Rev. Lett. 104, 136403 (2010).
  541. Stefan Chmiela, Alexandre Tkatchenko, Huziel E. Sauceda, Igor Poltavsky, Kristof T. Schütt,  and Klaus-Robert Müller, “Machine learning of accurate energy-conserving molecular force fields,” Science Advances 3, e1603015 (2017).
  542. Ryosuke Jinnouchi, Jonathan Lahnsteiner, Ferenc Karsai, Georg Kresse,  and Menno Bokdam, “Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with bayesian inference,” Phys. Rev. Lett. 122, 225701 (2019).
  543. Hongxiang Zong, Heather Wiebe,  and Graeme J. Ackland, “Understanding high pressure hydrogen with a hierarchical machine-learned potential,” Nature Communications 11 (2020), 10.1038/s41467-020-18788-9.
  544. Bingqing Cheng, Guglielmo Mazzola, Chris J. Pickard,  and Michele Ceriotti, “Evidence for supercritical behaviour of high-pressure liquid hydrogen,” Nature 585, 217–220 (2020).
  545. Andrea Tirelli, Giacomo Tenti, Kousuke Nakano,  and Sandro Sorella, “High-pressure hydrogen by machine learning and quantum monte carlo,” Phys. Rev. B 106, L041105 (2022).
  546. David M Ceperley, Scott Jensen, Yubo Yang, Hongwei Niu, Carlo Pierleoni,  and Markus Holzmann, “Training models using forces computed by stochastic electronic structure methods,” Electronic Structure 6, 015011 (2024).
  547. Bingqing Cheng, Guglielmo Mazzola, Chris J. Pickard,  and Michele Ceriotti, “Reply to: On the liquid–liquid phase transition of dense hydrogen,” Nature 600, E15–E16 (2021).
  548. J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A. Stephens, A. P. Thompson, A. Cangi,  and S. Rajamanickam, “Accelerating finite-temperature kohn-sham density functional theory with deep neural networks,” Phys. Rev. B 104, 035120 (2021).
  549. A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles,  and G.J. Tucker, “Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials,” Journal of Computational Physics 285, 316–330 (2015).
  550. Emanuel Gull, Andrew J. Millis, Alexander I. Lichtenstein, Alexey N. Rubtsov, Matthias Troyer,  and Philipp Werner, “Continuous-time monte carlo methods for quantum impurity models,” Rev. Mod. Phys. 83, 349–404 (2011).
  551. R. Balescu, “Irreversible Processes in Ionized Gases,” Phys. Fluids 3, 52 (1960).
  552. A. Lenard, “On Bogoluibov’s kinetic equation for a spatially homogeneous plasma,” Phys. Plasmas 8, 2275 (2001).
  553. S. I. Braginskii, “Transport Processes in a Plasma,” Reviews of Plasma Physics 1, 205 (1965).
  554. Erik Schroedter and Michael Bonitz, “Classical and Quantum Theory of Fluctuations for Many-Particle Systems out of Equilibrium,” Contrib. Plasma Phys.  (2024).
  555. P. L. Bhatnagar, E. P. Gross,  and M. Krook, “A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems,” Phys. Rev. 94, 511–525 (1954).
  556. Norman Rostoker and M.N. Rosenbluth, “Test particles in a completely ionized plasma,” Phys. Fluidss 3, 1 (1960).
  557. Patrick Ludwig, Michael Bonitz, Hanno Kählert,  and James W Dufty, “Dynamics of strongly correlated ions in a partially ionized quantum plasma,” J. Phys.: Conf. Ser. 220, 012003 (2010).
  558. D. C. Scott, R. Binder,  and S. W. Koch, “Ultrafast dephasing through acoustic plasmon undamping in nonequilibrium electron-hole plasmas,” Phys. Rev. Lett. 69, 347–350 (1992).
  559. R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger,  and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45, 1107–1115 (1992).
  560. S. Kosse, M. Bonitz, M. Schlanges,  and W.D. Kraeft, “Evaluation of the quantum Landau collision integral,” Contrib. Plasma Phys. 37, 499 (1997).
  561. Christian R. Scullard, Andrew P. Belt, Susan C. Fennell, Marija R. Janković, Nathan Ng, Susana Serna,  and Frank R. Graziani, “Numerical solution of the quantum Lenard-Balescu equation for a non-degenerate one-component plasma,” Physics of Plasmas 23, 092119 (2016).
  562. J. Vorberger and D. O. Gericke, “Coupled mode effects on energy transfer in weakly coupled, two-temperature plasmas,” Physics of Plasmas 16, 082702 (2009).
  563. L. V. Keldysh, “Diagram technique for nonequilibrium processes,” JETP 20, 1018 (1965).
  564. K. Balzer and M. Bonitz, Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems (Springer, Berlin Heidelberg, 2013).
  565. T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).
  566. J. J. Kas, T. D. Blanton,  and J. J. Rehr, “Exchange-correlation contributions to thermodynamic properties of the homogeneous electron gas from a cumulant green’s function approach,” Phys. Rev. B 100, 195144 (2019).
  567. J.-P. Joost, N. Schlünzen, S. Hese, M. Bonitz, C. Verdozzi, P. Schmitteckert,  and M. Hopjan, “Löwdin’s symmetry dilemma within Green functions theory for the one-dimensional Hubbard model,” Contributions to Plasma Physics 61, e202000220 (2021), e202000220 ctpp.202000220.
  568. Andrea Marini, Conor Hogan, Myrta Grüning,  and Daniele Varsano, “yambo: An ab initio tool for excited state calculations,” Computer Physics Communications 180, 1392–1403 (2009).
  569. Michael Bonitz, Antti-Pekka Jauho, Michael Sadovskii,  and Sergei Tikhodeev, “In Memoriam Leonid V. Keldysh,” physica status solidi (b) 256, 1800600 (2019a).
  570. L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems, Frontiers in Physics. A Lecture Note and Reprint Series (W.A. Benjamin, 1962).
  571. M Bonitz, D Kremp, D C Scott, R Binder, W D Kraeft,  and H S Köhler, “Numerical analysis of non-Markovian effects in charge-carrier scattering: one-time versus two-time kinetic equations,” J. Phys.: Cond. Matt. 8, 6057 (1996).
  572. M. Bonitz and D. Kremp, “Kinetic energy relaxation and correlation time of nonequilibrium many-particle systems,” Phys. Lett. A 212, 83 – 90 (1996).
  573. R. Binder, S.H. Köhler,  and M. Bonitz, “Memory effects in the momentum orientation relaxation of electron hole plasmas in semiconductors,” Phys. Rev. B 55, 5110 (1997).
  574. D. Kremp, Th. Bornath, M. Bonitz,  and M. Schlanges, “Quantum kinetic theory of plasmas in strong laser fields,” Phys. Rev. E 60, 4725–4732 (1999).
  575. M. Bonitz, Th. Bornath, D. Kremp, M. Schlanges,  and W. D. Kraeft, “Quantum Kinetic Theory for Laser Plasmas. Dynamical Screening in Strong Fields,” Contrib. Plasma Phys. 39, 329–347 (1999).
  576. H. Haberland, M. Bonitz,  and D. Kremp, “Harmonics generation in electron-ion collisions in a short laser pulse,” Phys. Rev. E 64, 026405 (2001).
  577. N.-H. Kwong and M. Bonitz, “Real-time Kadanoff-Baym approach to plasma oscillations in a correlated electron gas,” Phys. Rev. Lett. 84, 1768–1771 (2000).
  578. N. Schlünzen, S. Hermanns, M. Bonitz,  and C. Verdozzi, “Dynamics of strongly correlated fermions:Ab initio results for two and three dimensions,” Phys. Rev. B 93, 035107 (2016).
  579. P. Lipavský, V. Špička,  and B. Velický, “Generalized Kadanoff-Baym ansatz for deriving quantum transport equations,” Phys. Rev. B 34, 6933–6942 (1986).
  580. Niclas Schlünzen, Jan-Philip Joost,  and Michael Bonitz, “Achieving the Scaling Limit for Nonequilibrium Green Functions Simulations,” Phys. Rev. Lett. 124, 076601 (2020b).
  581. Jan-Philip Joost, Niclas Schlünzen,  and Michael Bonitz, “G1-G2 scheme: Dramatic acceleration of nonequilibrium Green functions simulations within the Hartree-Fock generalized Kadanoff-Baym ansatz,” Phys. Rev. B 101, 245101 (2020).
  582. J.-P. Joost, N. Schlünzen, H. Ohldag, M. Bonitz, F. Lackner,  and I. Brezinova, “The dynamically screened ladder approximation: Simultaneous treatment of strong electronic correlations and dynamical screening out of equilibrium,” Physical Review B 105, 165155 (2022).
  583. Michael Bonitz, Christopher Makait, Erik Schroedter, Joost Jan-Philip,  and Karsten Balzer, “Accelerating Nonequilibrium Green function simulations: the G1-G2 scheme and beyond,” phys. stat. sol. (b)  (2023b).
  584. D. Semkat, D. Kremp,  and M. Bonitz, “Kadanoff–Baym equations and non-Markovian Boltzmann equation in generalized T-matrix approximation,” J. Math. Phys. 41, 7458–7467 (2000).
  585. D. Semkat, D. Kremp,  and M. Bonitz, “Kadanoff-Baym equations with initial correlations,” Phys. Rev. E 59, 1557 (1999).
  586. M. Bonitz, S. Hermanns,  and K. Balzer, “Dynamics of Hubbard Nano-Clusters Following Strong Excitation,” Contrib. Plasma Phys. 53, 778–787 (2013a).
  587. Sebastian Hermanns, Niclas Schlünzen,  and Michael Bonitz, “Hubbard nanoclusters far from equilibrium,” Phys. Rev. B 90, 125111 (2014).
  588. Erik Schroedter and Michael Bonitz, “Two-time Quantum Fluctuations Approach and its relation to the Bethe-Salpeter equation,” submitted to phys. stat. sol. (b)  (2023).
  589. C. Makait, F. Borges Fajardo,  and M. Bonitz, “Time-dependent charged particle stopping in quantum plasmas: testing the G1–G2 scheme for quasi-one-dimensional systems,” Contrib. Plasma Phys. 63, e202300008 (2023).
  590. E. Schroedter, J.-P. Joost,  and M. Bonitz, “Quantum Fluctuations Approach to the Nonequilibrium G⁢W𝐺𝑊GWitalic_G italic_W-Approximation,” Cond. Matt. Phys. 25, 23401 (2022).
  591. Erik Schroedter, Björn Wurst, Jan-Philip Joost,  and Michael Bonitz, “Quantum Fluctuations Approach to the Nonequilibrium G⁢W𝐺𝑊GWitalic_G italic_W-Approximation: Density Correlations and Dynamic Structure Factor,” Phys. Rev. B 108, 205109 (2023).
  592. H. Appel and E. K. U. Gross, “Time-dependent natural orbitals and occupation numbers,” Europhysics Letters 92, 23001 (2010).
  593. M. Thiele, E. K. U. Gross,  and S. Kümmel, “Adiabatic approximation in nonperturbative time-dependent density-functional theory,” Phys. Rev. Lett. 100, 153004 (2008).
  594. Alina Kononov, Thomas W. Hentschel, Stephanie B. Hansen,  and Andrew D. Baczewski, “Trajectory sampling and finite-size effects in first-principles stopping power calculations,” npj Computational Materials 9, 205 (2023).
  595. Alina Kononov, Alexander J. White, Katarina A. Nichols, S. X. Hu,  and Andrew D. Baczewski, “Reproducibility of real-time time-dependent density functional theory calculations of electronic stopping power in warm dense matter,”  (2024), arXiv:2401.08793 [physics.comp-ph] .
  596. Zh. A. Moldabekov, T. Dornheim, M. Bonitz,  and T. S. Ramazanov, “Ion energy-loss characteristics and friction in a free-electron gas at warm dense matter and nonideal dense plasma conditions,” Phys. Rev. E 101, 053203 (2020).
  597. Young-Moo Byun, Jiuyu Sun,  and Carsten A Ullrich, “Time-dependent density-functional theory for periodic solids: assessment of excitonic exchange–correlation kernels,” Electronic Structure 2, 023002 (2020).
  598. E. K. U. Gross and W. Kohn, “Local density-functional theory of frequency-dependent linear response,” Phys. Rev. Lett 55, 2850 (1985).
  599. Zhandos A. Moldabekov, Michele Pavanello, Maximilian P. Böhme, Jan Vorberger,  and Tobias Dornheim, “Linear-response time-dependent density functional theory approach to warm dense matter with adiabatic exchange-correlation kernels,” Phys. Rev. Res. 5, 023089 (2023c).
  600. Zhandos A. Moldabekov, Jan Vorberger, Mani Lokamani,  and Tobias Dornheim, “Averaging over atom snapshots in linear-response TDDFT of disordered systems: A case study of warm dense hydrogen,” The Journal of Chemical Physics 159, 014107 (2023d).
  601. M. M Marinak, G. D. Kerbel,  and N. Gentile, “Three-dimensional hydra simulations of national ignition facility targets,” Phys. Plasmas 10, 390 (2001).
  602. A. L. Kritcher and et al, “Design of inertial fusion implosions reaching the burning plasma regime,” Nat. Phys. 18, 251 (2022).
  603. B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran,  and H. Tufo, “Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes,” Astrophysical Journal, Supplement 131, 273 (2000).
  604. J. P. Sauppe, Y. Lu, P. Tzeferacos, A. C. Reyes, S. Palaniyappan, K. A. Flippo, S. Li,  and J. L. Kline, “On the importance of three-dimensional modeling for high-energy-density physics experiments,” Phys. Plasmas 30, 062707 (2023).
  605. R.G. McLarren, Uncertainty Quantification and Predictive Computational Science (Springer, Heidelberg, 2018).
  606. A. Banerjee, “Rayleigh-taylor instability: A status review of experimental designs and measurement diagnostics,” Journ. Fluids Eng. 142, 120801 (2020).
  607. J. I. Castor, Radiation Hydrodynamics, Vol. 15 (Cambridge University Press, New York, 2004).
  608. J.A. Gaffney and et al., “A review of equation-of-state models for inertial confinement fusion materials,” High Energy Dens. Phys. 28, 7–24 (2018).
  609. P.E. Grabowski and et al., “Review of the first charged-particle transport coeffcient comparison workshop,” High Energy Dens. Phys. 37, 100905 (2020).
  610. Lucas J. Stanek, Alina Kononov, Stephanie B. Hansen, Brian M. Haines, S. X. Hu, Patrick F. Knapp, Michael S. Murillo, Liam G. Stanton, Heather D. Whitley, Scott D. Baalrud, Lucas J. Babati, Andrew D. Baczewski, Mandy Bethkenhagen, Augustin Blanchet, III Clay, Raymond C., Kyle R. Cochrane, Lee A. Collins, Amanda Dumi, Gerald Faussurier, Martin French, Zachary A. Johnson, Valentin V. Karasiev, Shashikant Kumar, Meghan K. Lentz, Cody A. Melton, Katarina A. Nichols, George M. Petrov, Vanina Recoules, Ronald Redmer, Gerd Röpke, Maximilian Schörner, Nathaniel R. Shaffer, Vidushi Sharma, Luciano G. Silvestri, François Soubiran, Phanish Suryanarayana, Mikael Tacu, Joshua P. Townsend,  and Alexander J. White, “Review of the second charged-particle transport coefficient code comparison workshop,” Physics of Plasmas 31, 052104 (2024).
  611. E. Madelung, “Quantentheorie in hydrodynamischer form,” Zeitschrift für Physik 40, 322–326 (1927).
  612. David Bohm, “A suggested interpretation of the quantum theory in terms of ”hidden” variables. i,” Phys. Rev. 85, 166–179 (1952).
  613. G. Manfredi and F. Haas, “Self-consistent fluid model for a quantum electron gas,” Phys. Rev. B 64, 075316 (2001).
  614. J. Vranjes, B. P. Pandey,  and S. Poedts, “On quantum plasma: A plea for a common sense,” Europhysics Letters 99, 25001 (2012).
  615. M. Bonitz, E. Pehlke,  and T. Schoof, “Attractive forces between ions in quantum plasmas: Failure of linearized quantum hydrodynamics,” Phys. Rev. E 87, 033105 (2013b).
  616. M. Bonitz, E. Pehlke,  and T. Schoof, “Reply to “Comment on ‘Attractive forces between ions in quantum plasmas: Failure of linearized quantum hydrodynamics’ ”,” Phys. Rev. E 87, 037102 (2013c).
  617. M. Bonitz, Zh. A. Moldabekov,  and T. S. Ramazanov, “Quantum hydrodynamics for plasmas—quo vadis?” Physics of Plasmas 26, 090601 (2019b).
  618. Zh. A. Moldabekov, M. Bonitz,  and T. S. Ramazanov, “Theoretical foundations of quantum hydrodynamics for plasmas,” Phys. Plasmas 25, 031903 (2018).
  619. F. Graziani, Zh. Moldabekov, B. Olson,  and M. Bonitz, “Shock physics in warm dense matter–a quantum hydrodynamics perspective,” Contrib. Plasma Phys. 62, e202100170 (2022).
  620. Peter E Blöchl, “Projector augmented-wave method,” Physical review B 50, 17953 (1994).
  621. Georg Kresse and Daniel Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical review b 59, 1758 (1999).
  622. Shuichi Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” The Journal of Chemical Physics 81, 511–519 (1984).
  623. William G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695–1697 (1985).
  624. R. Piron and T. Blenski, “Variational-average-atom-in-quantum-plasmas (vaaqp) code and virial theorem: Equation-of-state and shock-hugoniot calculations for warm dense al, fe, cu, and pb,” Phys. Rev. E 83, 026403 (2011).
  625. Walter R. Johnson, “Pressure in the average-atom model,” Https://www3.nd.edu/ johnson/.
  626. Tobias Dornheim, Sebastian Schwalbe, Maximilian P. Böhme, Zhandos A. Moldabekov, Jan Vorberger,  and Panagiotis Tolias, “Ab initio path integral Monte Carlo simulations of warm dense two-component systems without fixed nodes: Structural properties,” The Journal of Chemical Physics 160, 164111 (2024e).
  627. J Vorberger, I Tamblyn, B Militzer,  and S Bonev, “Hydrogen-helium mixtures in the interiors of giant planets,” Physical Review B 75, 24206 (2007b).
  628. Hauke Juranek, Nadine Nettelmann, Sandra Kuhlbrodt, Volker Schwarz, Bastian Holst,  and Ronald Redmer, “Metal-Nonmetal Transition in Dense Plasmas,” Contrib. Plasma Phys. 45, 432–440 (2005).
  629. G. E. Norman, I. M. Saitov,  and V. V. Stegailov, “Plasma-plasma and liquid-liquid first-order phase transitions,” Contributions to Plasma Physics 55, 215–221 (2015).
  630. R. Rompe and M. Steenbeck, The plasma state of gases (in German), Ergebnisse der Exakten Naturwissenschaften, Vol. 18 (Springer, Berlin, 1939).
  631. G. Ecker and W. Kröll, “Lowering of the Ionization Energy for a Plasma in Thermodynamic Equilibrium,” The Physics of Fluids 6, 62–69 (1963).
  632. F. J. Rogers, H. C. Graboske,  and D. J. Harwood, “Bound eigenstates of the static screened coulomb potential,” Phys. Rev. A 1, 1577–1586 (1970).
  633. R. Zimmermann, K. Kilimann, W. D. Kraeft, D. Kremp,  and G. Röpke, “Dynamical screening and self-energy of excitons in the electron–hole plasma,” physica status solidi (b) 90, 175–187 (1978).
  634. H. Haug and S. Schmitt-Rink, “Electron theory of the optical properties of laser-excited semiconductors,” Progress in Quantum Electronics 9, 3–100 (1984).
  635. G. Massacrier, M. Böhme, J. Vorberger, F. Soubiran,  and B. Militzer, “Reconciling ionization energies and band gaps of warm dense matter derived with ab initio simulations and average atom models,” Phys. Rev. Res. 3, 023026 (2021).
  636. S. X. Hu, “Continuum lowering and fermi-surface rising in strongly coupled and degenerate plasmas,” Phys. Rev. Lett. 119, 065001 (2017).
  637. J. Seidel, S. Arndt,  and W. D. Kraeft, “Energy spectrum of hydrogen atoms in dense plasmas,” Phys. Rev. E 52, 5387–5400 (1995).
  638. C. A. Onate and J. O. Ojonubah, “Eigensolutions of the schrödinger equation with a class of yukawa potentials via supersymmetric approach,” Journal of Theoretical and Applied Physics 10, 21–26 (2016).
  639. A.N. Starostin, A.B. Mironov, N.L. Aleksandrov, N.J. Fisch,  and R.M. Kulsrud, “Quantum corrections to the distribution function of particles over momentum in dense media,” Physica A: Statistical Mechanics and its Applications 305, 287–296 (2002), non Extensive Thermodynamics and Physical applications.
  640. Paola Gori-Giorgi and John P. Perdew, “Short-range correlation in the uniform electron gas: Extended Overhauser model,” Phys. Rev. B 64, 155102 (2001).
  641. E. Daniel and S. H. Vosko, “Momentum Distribution of an Interacting Electron Gas,” Physical Review 120, 2041–2044 (1960).
  642. V. M. Galitskii and V. V. Yakimets, “Particle relaxation in a maxwell gas,” Soviet Physics JETP 24 (1967).
  643. J. C. Kimball, “Short-range correlations and the structure factor and momentum distribution of electrons,” J. Phys. A: Math. Gen. 8, 1513 (1975).
  644. H. Yasuhara and Y. Kawazoe, “A note on the momentum distribution function for an electron gas,” Physica A: Statistical Mechanics and its Applications 85, 416–424 (1976).
  645. Johannes Hofmann, Marcus Barth,  and Wilhelm Zwerger, “Short-distance properties of Coulomb systems,” Physical Review B 87, 235125 (2013).
  646. M Holzmann, B Bernu, C Pierleoni, J Mcminis, D M Ceperley, V Olevano,  and L Delle Site, “Momentum Distribution of the Homogeneous Electron Gas,” Physical Review Letters 107, 110402 (2011).
  647. Burkhard Militzer and E. L. Pollock, “Lowering of the kinetic energy in interacting quantum systems,” Phys. Rev. Lett. 89, 280401 (2002).
  648. Simo Huotari, J. Aleksi Soininen, Tuomas Pylkkänen, Keijo Hämäläinen, Arezki Issolah, Andrey Titov, Jeremy McMinis, Jeongnim Kim, Ken Esler, David M. Ceperley, Markus Holzmann,  and Valerio Olevano, “Momentum distribution and renormalization factor in sodium and the electron gas,” Phys. Rev. Lett. 105, 086403 (2010).
  649. N. Hiraoka, Y. Yang, T. Hagiya, A. Niozu, K. Matsuda, S. Huotari, M. Holzmann,  and D. M. Ceperley, “Direct observation of the momentum distribution and renormalization factor in lithium,” Phys. Rev. B 101, 165124 (2020).
  650. Yubo Yang, Nozomu Hiraoka, Kazuhiro Matsuda, Markus Holzmann,  and David M. Ceperley, “Quantum monte carlo compton profiles of solid and liquid lithium,” Phys. Rev. B 101, 165125 (2020b).
  651. V. Gorelov, Y. Yang, M. Ruggeri, D. M. Ceperley, C. Pierleoni,  and M. Holzmann, “Neutral band gap of carbon by quantum monte carlo methods,” Condensed Matter Physics 26, 33701 (2023b).
  652. M. Eremets, A. P. Drozdov, P.P. Kong,  and H. Wang, “Molecular semimetallic hydrogen,” Nature Physics  (2017).
  653. Ranga P Dias, Ori Noked,  and Isaac F Silvera, “New insulating low temperature phase in dense hydrogen: The phase diagram to 421 GPa,”   (2016).
  654. R P Dias, O Noked,  and I F Silvera, “Quantum phase transition in solid hydrogen at high pressure,” Physical Review B 100, 184112 (2019).
  655. P Loubeyre, F Occelli,  and R LeToullec, “Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen,” Nature 416, 613–617 (2002).
  656. W. J. Nellis, S. T. Weir,  and A. C. Mitchell, “Minimum metallic conductivity of fluid hydrogen at 140 gpa (1.4 mbar),” Physical Review B - Condensed Matter and Materials Physics 59, 3434–3449 (1999).
  657. M. D. Knudson, M. P. Desjarlais, M. Preising,  and R. Redmer, “Evaluation of exchange-correlation functionals with multiple-shock conductivity measurements in hydrogen and deuterium at the molecular-to-atomic transition,” Physical Review B 98, 174110 (2018).
  658. R Stewart McWilliams, D Allen Dalton, Mohammad F Mahmood,  and Alexander F Goncharov, “Optical Properties of Fluid Hydrogen at the Transition to a Conducting State,” Phys. Rev. Letts. 116, 1–6 (2016).
  659. Markus Holzmann, Francesco Calcavecchia, David M. Ceperley,  and Valerio Olevano, “Static self-energy and effective mass of the homogeneous electron gas from quantum monte carlo calculations,” Phys. Rev. Lett. 131, 186501 (2023).
  660. A. A. Kugler, “Theory of the local field correction in an electron gas,” J. Stat. Phys 12, 35 (1975).
  661. Deyu Lu, “Evaluation of model exchange-correlation kernels in the adiabatic connection fluctuation-dissipation theorem for inhomogeneous systems,” The Journal of Chemical Physics 140, 18A520 (2014).
  662. Christopher E. Patrick and Kristian S. Thygesen, “Adiabatic-connection fluctuation-dissipation dft for the structural properties of solids—the renormalized alda and electron gas kernels,” The Journal of Chemical Physics 143, 102802 (2015).
  663. A. Pribram-Jones, P. E. Grabowski,  and K. Burke, “Thermal density functional theory: Time-dependent linear response and approximate functionals from the fluctuation-dissipation theorem,” Phys. Rev. Lett 116, 233001 (2016).
  664. Xiaolei Zan, Chengliang Lin, Yong Hou,  and Jianmin Yuan, “Local field correction to ionization potential depression of ions in warm or hot dense matter,” Phys. Rev. E 104, 025203 (2021).
  665. W. Stolzmann and M. Rösler, “Static local-field corrected dielectric and thermodynamic functions,” Contrib. Plasma Phys 41, 203 (2001).
  666. K. S. Singwi, M. P. Tosi, R. H. Land,  and A. Sjölander, “Electron correlations at metallic densities,” Phys. Rev 176, 589 (1968).
  667. P. Vashishta and K. S. Singwi, “Electron correlations at metallic densities v,” Phys. Rev. B 6, 875 (1972).
  668. S. Tanaka, “Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation,” J. Chem. Phys 145, 214104 (2016).
  669. Shigenori Tanaka, “Improved equation of state for finite-temperature spin-polarized electron liquids on the basis of singwi–tosi–land–sjölander approximation,” Contributions to Plasma Physics 57, 126–136 (2017).
  670. P. Tolias, F. Lucco Castello,  and T. Dornheim, “Integral equation theory based dielectric scheme for strongly coupled electron liquids,” The Journal of Chemical Physics 155, 134115 (2021).
  671. F. Lucco Castello, P. Tolias,  and T. Dornheim, “Classical bridge functions in classical and quantum plasma liquids,” Europhysics Letters 138, 44003 (2022).
  672. Tobias Dornheim, Travis Sjostrom, Shigenori Tanaka,  and Jan Vorberger, “Strongly coupled electron liquid: Ab initio path integral monte carlo simulations and dielectric theories,” Phys. Rev. B 101, 045129 (2020d).
  673. Panagiotis Tolias, Federico Lucco Castello,  and Tobias Dornheim, “Quantum version of the integral equation theory-based dielectric scheme for strongly coupled electron liquids,” The Journal of Chemical Physics 158, 141102 (2023b).
  674. James P. F. LeBlanc, Kun Chen, Kristjan Haule, Nikolay V. Prokof’ev,  and Igor S. Tupitsyn, “Dynamic response of an electron gas: Towards the exact exchange-correlation kernel,” Phys. Rev. Lett. 129, 246401 (2022).
  675. Peng-Cheng Hou, Bao-Zong Wang, Kristjan Haule, Youjin Deng,  and Kun Chen, “Exchange-correlation effect in the charge response of a warm dense electron gas,” Phys. Rev. B 106, L081126 (2022).
  676. Tobias Dornheim, Zhandos A Moldabekov, Jan Vorberger,  and Simon Groth, “Ab initio path integral monte carlo simulation of the uniform electron gas in the high energy density regime,” Plasma Physics and Controlled Fusion 62, 075003 (2020e).
  677. Zhandos Moldabekov, Maximilian Böhme, Jan Vorberger, David Blaschke,  and Tobias Dornheim, “Ab initio static exchange–correlation kernel across jacob’s ladder without functional derivatives,” Journal of Chemical Theory and Computation 19, 1286–1299 (2023e).
  678. Chongjie Mo, Zhenguo Fu, Wei Kang, Ping Zhang,  and X. T. He, “First-principles estimation of electronic temperature from x-ray thomson scattering spectrum of isochorically heated warm dense matter,” Phys. Rev. Lett. 120, 205002 (2018).
  679. Kushal Ramakrishna, Attila Cangi, Tobias Dornheim, Andrew Baczewski,  and Jan Vorberger, “First-principles modeling of plasmons in aluminum under ambient and extreme conditions,” Phys. Rev. B 103, 125118 (2021).
  680. S Frydrych, J Vorberger, NJ Hartley, AK Schuster, K Ramakrishna, AM Saunders, T van Driel, RW Falcone, LB Fletcher, E Galtier, et al., “Demonstration of x-ray thomson scattering as diagnostics for miscibility in warm dense matter,” Nature communications 11, 1–7 (2020).
  681. K. Voigt, M. Zhang, K. Ramakrishna, A. Amouretti, K. Appel, E. Brambrink, V. Cerantola, D. Chekrygina, T. Döppner, R. W. Falcone, K. Falk, L. B. Fletcher, D. O. Gericke, S. Göde, M. Harmand, N. J. Hartley, S. P. Hau-Riege, L. G. Huang, O. S. Humphries, M. Lokamani, M. Makita, A. Pelka, C. Prescher, A. K. Schuster, M. Šmíd, T. Toncian, J. Vorberger, U. Zastrau, T. R. Preston,  and D. Kraus, “Demonstration of an x-ray raman spectroscopy setup to study warm dense carbon at the high energy density instrument of european xfel,” Physics of Plasmas 28, 082701 (2021).
  682. D. Ranjan, K. Ramakrishna, K. Voigt, O. S. Humphries, B. Heuser, M. G. Stevenson, J. Lütgert, Z. He, C. Qu, S. Schumacher, P. T. May, A. Amouretti, K. Appel, E. Brambrink, V. Cerantola, D. Chekrygina, L. B. Fletcher, S. Göde, M. Harmand, N. J. Hartley, S. P. Hau-Riege, M. Makita, A. Pelka, A. K. Schuster, M. Šmíd, T. Toncian, M. Zhang, T. R. Preston, U. Zastrau, J. Vorberger,  and D. Kraus, “Toward using collective x-ray Thomson scattering to study C–H demixing and hydrogen metallization in warm dense matter conditions,” Physics of Plasmas 30, 052702 (2023).
  683. A. D. Baczewski, L. Shulenburger, M. P. Desjarlais, S. B. Hansen,  and R. J. Magyar, “X-ray thomson scattering in warm dense matter without the chihara decomposition,” Phys. Rev. Lett 116, 115004 (2016).
  684. Thomas Gawne, Zhandos A. Moldabekov, Oliver S. Humphries, Karen Appel, Carsten Bähtz, Victorien Bouffetier, Erik Brambrink, Attila Cangi, Sebastian Göde, Zuzana Konôpková, Mikako Makita, Mikhail Mishchenko, Motoaki Nakatsutsumi, Kushal Ramakrishna, Lisa Randolph, Sebastian Schwalbe, Jan Vorberger, Lennart Wollenweber, Ulf Zastrau, Tobias Dornheim,  and Thomas R. Preston, “Ultrahigh resolution x-ray thomson scattering measurements of electronic structures,”  (2024), arXiv:2403.02776 [physics.plasm-ph] .
  685. Paula Mori-Sánchez and Aron J Cohen, “The derivative discontinuity of the exchange–correlation functional,” Physical Chemistry Chemical Physics 16, 14378–14387 (2014).
  686. Massimo Boninsegni and David M. Ceperley, “Density fluctuations in liquid 4He. Path integrals and maximum entropy,” Journal of Low Temperature Physics 104, 339–357 (1996).
  687. A. Filinov and M. Bonitz, “Collective and single-particle excitations in two-dimensional dipolar bose gases,” Phys. Rev. A 86, 043628 (2012).
  688. Tobias Dornheim, Zhandos A. Moldabekov,  and Jan Vorberger, “Nonlinear density response from imaginary-time correlation functions: Ab initio path integral monte carlo simulations of the warm dense electron gas,” The Journal of Chemical Physics 155, 054110 (2021e).
  689. Tobias Dornheim, Jan Vorberger, Zhandos A. Moldabekov,  and Maximilian Böhme, “Analysing the dynamic structure of warm dense matter in the imaginary-time domain: theoretical models and simulations,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381, 20220217 (2023g).
  690. E. Vitali, M. Rossi, L. Reatto,  and D. E. Galli, “Ab initio low-energy dynamics of superfluid and solid He4superscriptHe4{}^{4}\textnormal{H}\textnormal{e}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_H roman_e,” Phys. Rev. B 82, 174510 (2010).
  691. A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto,  and B. V. Svistunov, “Diagrammatic quantum Monte Carlo study of the Fröhlich polaron,” Phys. Rev. B 62, 6317–6336 (2000).
  692. Youssef Kora and Massimo Boninsegni, “Dynamic structure factor of superfluid He4superscriptHe4{}^{4}\mathrm{He}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He from quantum Monte Carlo: Maximum entropy revisited,” Phys. Rev. B 98, 134509 (2018).
  693. J. Schött, E. G. C. P. van Loon, I. L. M. Locht, M. I. Katsnelson,  and I. Di Marco, “Comparison between methods of analytical continuation for bosonic functions,” Phys. Rev. B 94, 245140 (2016).
  694. Junya Otsuki, Masayuki Ohzeki, Hiroshi Shinaoka,  and Kazuyoshi Yoshimi, “Sparse modeling approach to analytical continuation of imaginary-time quantum monte carlo data,” Phys. Rev. E 95, 061302 (2017).
  695. Olga Goulko, Andrey S. Mishchenko, Lode Pollet, Nikolay Prokof’ev,  and Boris Svistunov, “Numerical analytic continuation: Answers to well-posed questions,” Phys. Rev. B 95, 014102 (2017).
  696. T. Döppner, O.L. Landen, H.J. Lee, P. Neumayer, S.P. Regan,  and S.H. Glenzer, “Temperature measurement through detailed balance in x-ray thomson scattering,” High Energy Density Physics 5, 182–186 (2009).
  697. Tobias Dornheim, Damar C. Wicaksono, Juan E. Suarez-Cardona, Panagiotis Tolias, Maximilian P. Böhme, Zhandos A. Moldabekov, Michael Hecht,  and Jan Vorberger, “Extraction of the frequency moments of spectral densities from imaginary-time correlation function data,” Phys. Rev. B 107, 155148 (2023h).
  698. Tobias Dornheim, Damar C. Wicaksono, Juan E. Suarez-Cardona, Panagiotis Tolias, Maximilian P. Böhme, Zhandos A. Moldabekov, Michael Hecht,  and Jan Vorberger, “Extraction of the frequency moments of spectral densities from imaginary-time correlation function data,” Phys. Rev. B 107, 155148 (2023i).
  699. Maximilian P. Böhme, Luke B. Fletcher, Tilo Döppner, Dominik Kraus, Andrew D. Baczewski, Thomas R. Preston, Michael J. MacDonald, Frank R. Graziani, Zhandos A. Moldabekov, Jan Vorberger,  and Tobias Dornheim, “Evidence of free-bound transitions in warm dense matter and their impact on equation-of-state measurements,”  (2023), arXiv:2306.17653 .
  700. G. Gregori, S. H. Glenzer, W. Rozmus, R. W. Lee,  and O. L. Landen, “Theoretical model of x-ray scattering as a dense matter probe,” Phys. Rev. E 67, 026412 (2003).
  701. C. Bowen, G. Sugiyama,  and B. J. Alder, “Static dielectric response of the electron gas,” Phys. Rev. B 50, 14838 (1994).
  702. Tobias Dornheim, Jan Vorberger, Zhandos A. Moldabekov,  and Michael Bonitz, “Nonlinear interaction of external perturbations in warm dense matter,” Contributions to Plasma Physics 62, e202100247 (2022f).
  703. G.D. Mahan, Many-Particle Physics, Physics of Solids and Liquids (Springer US, 1990).
  704. C. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, Oxford Graduate Texts (OUP Oxford, 2012).
  705. Tobias Dornheim and Jan Vorberger, “Finite-size effects in the reconstruction of dynamic properties from ab initio path integral monte carlo simulations,” Phys. Rev. E 102, 063301 (2020).
  706. Viktor Bobrov, Sergey Trigger,  and Daniel Litinski, “Universality of the phonon–roton spectrum in liquids and superfluidity of 4he,” Zeitschrift für Naturforschung A 71, 565–575 (2016).
  707. Henri Godfrin, Matthias Meschke, Hans-Jochen Lauter, Ahmad Sultan, Helga M. Böhm, Eckhard Krotscheck,  and Martin Panholzer, “Observation of a roton collective mode in a two-dimensional fermi liquid,” Nature 483, 576–579 (2012).
  708. Tobias Dornheim, Zhandos A. Moldabekov, Jan Vorberger,  and Burkhard Militzer, “Path integral monte carlo approach to the structural properties and collective excitations of liquid 3he without fixed nodes,” Scientific Reports 12, 708 (2022g).
  709. Yasutami Takada and Hiroshi Yasuhara, “Dynamical structure factor of the homogeneous electron liquid: Its accurate shape and the interpretation of experiments on aluminum,” Phys. Rev. Lett. 89, 216402 (2002).
  710. Yasutami Takada, “Emergence of an excitonic collective mode in the dilute electron gas,” Phys. Rev. B 94, 245106 (2016).
  711. Jaakko Koskelo, Lucia Reining,  and Matteo Gatti, “Short-range excitonic phenomena in low-density metals,”  (2023), arXiv:2301.00474 [cond-mat.str-el] .
  712. N. D. Mermin, “Lindhard dielectric function in the relaxation-time approximation,” Phys. Rev. B 1, 2362–2363 (1970).
  713. A. Selchow, G. Röpke, A. Wierling, H. Reinholz, T. Pschiwul,  and G. Zwicknagel, “Dynamic structure factor for a two-component model plasma,” Phys. Rev. E 64, 056410 (2001).
  714. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller,  and F. Bechstedt, “Linear optical properties in the projector-augmented wave methodology,” Phys. Rev. B 73, 045112 (2006).
  715. Kushal Ramakrishna and Jan Vorberger, “Ab initio dielectric response function of diamond and other relevant high pressure phases of carbon,” Journal of Physics: Condensed Matter 32, 095401 (2019).
  716. Thomas Tschentscher, Christian Bressler, Jan Grünert, Anders Madsen, Adrian P. Mancuso, Michael Meyer, Andreas Scherz, Harald Sinn,  and Ulf Zastrau, “Photon beam transport and scientific instruments at the european xfel,” Applied Sciences 7, 592 (2017).
  717. Christoph Bostedt, Sébastien Boutet, David M. Fritz, Zhirong Huang, Hae Ja Lee, Henrik T. Lemke, Aymeric Robert, William F. Schlotter, Joshua J. Turner,  and Garth J. Williams, “Linac coherent light source: The first five years,” Rev. Mod. Phys. 88, 015007 (2016).
  718. E. E. McBride, T. G. White, A. Descamps, L. B. Fletcher, K. Appel, F. P. Condamine, C. B. Curry, F. Dallari, S. Funk, E. Galtier, M. Gauthier, S. Goede, J. B. Kim, H. J. Lee, B. K. Ofori-Okai, M. Oliver, A. Rigby, C. Schoenwaelder, P. Sun, Th. Tschentscher, B. B. L. Witte, U. Zastrau, G. Gregori, B. Nagler, J. Hastings, S. H. Glenzer,  and G. Monaco, “Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source,” Review of Scientific Instruments 89, 10F104 (2018).
  719. Aidan P. Thompson, H. Metin Aktulga, Richard Berger, Dan S. Bolintineanu, W. Michael Brown, Paul S. Crozier, Pieter J. in ’t Veld, Axel Kohlmeyer, Stan G. Moore, Trung Dac Nguyen, Ray Shan, Mark J. Stevens, Julien Tranchida, Christian Trott,  and Steven J. Plimpton, “Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Computer Physics Communications 271, 108171 (2022).
  720. M. Bonitz, A. Filinov, V. O. Golubnychiy, Th. Bornath,  and W. D. Kraeft, “First principle thermodynamic and dynamic simulations for dense quantum plasmas,” Contrib. Plasma Phys. 45, 450–458 (2005b).
  721. Thomas G. White, Hannah Poole, Emma E. McBride, Matthew Oliver, Adrien Descamps, Luke B. Fletcher, W. Alex Angermeier, Cameron H. Allen, Karen Appel, Florian P. Condamine, Chandra B. Curry, Francesco Dallari, Stefan Funk, Eric Galtier, Eliseo J. Gamboa, Maxence Gauthier, Peter Graham, Sebastian Goede, Daniel Haden, Jongjin B. Kim, Hae Ja Lee, Benjamin K. Ofori-Okai, Scott Richardson, Alex Rigby, Christopher Schoenwaelder, Peihao Sun, Bastian L. Witte, Thomas Tschentscher, Ulf Zastrau, Bob Nagler, J. B. Hastings, Giulio Monaco, Dirk O. Gericke, Siegfried H. Glenzer,  and Gianluca Gregori, “Speed of sound in methane under conditions of planetary interiors,” Phys. Rev. Res. 6, L022029 (2024).
  722. Bastian Holst, Martin French,  and Ronald Redmer, “Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen,” Phys. Rev. B 83, 235120 (2011).
  723. Martin French, Gerd Röpke, Maximilian Schörner, Mandy Bethkenhagen, Michael P. Desjarlais,  and Ronald Redmer, “Electronic transport coefficients from density functional theory across the plasma plane,” Phys. Rev. E 105, 065204 (2022).
  724. G. S. Demyanov, D. V. Knyazev,  and P. R. Levashov, “Continuous kubo-greenwood formula: Theory and numerical implementation,” Physical Review E 105, 035307 (2022).
  725. C. A. Melton, R. C. Clay III, K. R. Cochrane, A. Dumi, T. A. Gardiner, M. K. Lentz,  and J. P. Townsend, “Transport coefficients of warm dense matter from kohn-sham density functional theory,” Physics of Plasmas 31, 043903 (2024).
  726. S. van de Bund, H. Wiebe,  and G. J. Ackland, “Isotope quantum effects in the metallization transition in liquid hydrogen,” Physical Review Letters 126, 225701 (2021).
  727. V. Recoules, F. Lambert, A. Decoster, B. Canaud,  and J. Clérouin, “Ab initio determination of thermal conductivity of dense hydrogen plasmas,” Physical Review Letters 102, 075002 (2009).
  728. F. Lambert, V. Recoules, A. Decoster, J. Clérouin,  and M. Desjarlais, “On the transport coefficients of hydrogen in the inertial confinement fusion regime,” Physics of Plasmas 18, 056306 (2011).
  729. Michael P. Desjarlais, Christian R. Scullard, Lorin X. Benedict, Heather D. Whitley,  and Ronald Redmer, “Density-functional calculations of transport properties in the nondegenerate limit and the role of electron-electron scattering,” Phys. Rev. E 95, 033203 (2017).
  730. S. X. Hu, L. A. Collins, V. N. Goncharov, T. R. Boehly, R. Epstein, R. L. McCrory,  and S. Skupsky, “First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications,” Phys. Rev. E 90, 033111 (2014).
  731. S. X. Hu, L. A. Collins, J. P. Colgan, V. N. Goncharov,  and D. P. Kilcrease, “Optical properties of highly compressed polystyrene: An ab initio study,” Phys. Rev. B 96, 144203 (2017).
  732. Heidi Reinholz, G. Röpke, S. Rosmej,  and Ronald Redmer, “Conductivity of warm dense matter including electron-electron collisions,” Phys. Rev. E 91, 043105 (2015).
  733. Nathaniel R. Shaffer and Charles E. Starrett, “Dense plasma opacity via the multiple-scattering method,” Phys. Rev. E 105, 015203 (2022).
  734. L. Spitzer and R. Härm, “Transport phenomena in a completely ionized gas,” Phys. Rev. 89, 977 (1953).
  735. G. Röpke, M. Schörner, R. Redmer,  and M. Bethkenhagen, “Virial expansion of the electrical conductivity of hydrogen plasmas,” Phys. Rev. E 104, 045204 (2021).
  736. Kushal Ramakrishna, Mani Lokamani, Andrew Baczewski, Jan Vorberger,  and Attila Cangi, “Electrical conductivity of iron in earth’s core from microscopic ohm’s law,” Phys. Rev. B 107, 115131 (2023a).
  737. K Ramakrishna, M Lokamani, A Baczewski, J Vorberger,  and A Cangi, “Impact of electronic correlations on high-pressure iron: insights from time-dependent density functional theory,” Electronic Structure 5, 045002 (2023b).
  738. P.E. Grabowski, S.B. Hansen, M.S. Murillo, L.G. Stanton, F.R. Graziani, A.B. Zylstra, S.D. Baalrud, P. Arnault, A.D. Baczewski, L.X. Benedict, C. Blancard, O. Čertík, J. Clérouin, L.A. Collins, S. Copeland, A.A. Correa, J. Dai, J. Daligault, M.P. Desjarlais, M.W.C. Dharma-wardana, G. Faussurier, J. Haack, T. Haxhimali, A. Hayes-Sterbenz, Y. Hou, S.X. Hu, D. Jensen, G. Jungman, G. Kagan, D. Kang, J.D. Kress, Q. Ma, M. Marciante, E. Meyer, R.E. Rudd, D. Saumon, L. Shulenburger, R.L. Singleton, T. Sjostrom, L.J. Stanek, C.E. Starrett, C. Ticknor, S. Valaitis, J. Venzke,  and A. White, “Review of the first charged-particle transport coefficient comparison workshop,” High Energy Density Physics 37, 100905 (2020).
  739. R. J. Magyar, L. Shulenburger,  and A. D. Baczewski, “Stopping of deuterium in warm dense deuterium from ehrenfest time-dependent density functional theory,” Contributions to Plasma Physics 56, 459–466 (2016).
  740. Y. H. Ding, A. J. White, S. X. Hu, O. Certik,  and L. A. Collins, “Ab initio studies on the stopping power of warm dense matter with time-dependent orbital-free density functional theory,” Phys. Rev. Lett. 121, 145001 (2018).
  741. H. B. Nersisyan, M. Walter,  and G. Zwicknagel, “Stopping power of ions in a magnetized two-temperature plasma,” Phys. Rev. E 61, 7022–7033 (2000).
  742. Tobias Dornheim, Maximilian Böhme, Zhandos A. Moldabekov, Jan Vorberger,  and Michael Bonitz, “Density response of the warm dense electron gas beyond linear response theory: Excitation of harmonics,” Phys. Rev. Research 3, 033231 (2021f).
  743. C. D. Hu and E. Zaremba, “Z3superscript𝑍3{Z}^{3}italic_Z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT correction to the stopping power of ions in an electron gas,” Phys. Rev. B 37, 9268–9277 (1988).
  744. K. S. Singwi and M. P. Tosi, “Correlations in electron liquids,” Solid State Physics 36, 177–266 (1981).
  745. D. O. Gericke, S. Kosse, M. Schlanges,  and M. Bonitz, “T-matrix approach to equilibium and nonequilibrium carrier-carrier scattering in semiconductors,” Phys. Rev. B 59, 10639–10650 (1999).
  746. D. O. Gericke and M. Schlanges, “Beam-plasma coupling effects on the stopping power of dense plasmas,” Phys. Rev. E 60, 904–910 (1999).
  747. D. O. Gericke, M. Schlanges,  and Th. Bornath, “Stopping power of nonideal, partially ionized plasmas,” Phys. Rev. E 65, 036406 (2002b).
  748. M. Bonitz, “Correlation time approximation in non-Markovian kinetics,” Phys. Lett. A 221, 85 – 93 (1996).
  749. Karsten Balzer, Niclas Schlünzen,  and Michael Bonitz, “Stopping dynamics of ions passing through correlated honeycomb clusters,” Phys. Rev. B 94, 245118 (2016).
  750. N. Schlünzen, K. Balzer, M. Bonitz, L. Deuchler,  and E. Pehlke, “Time-dependent simulation of ion stopping: Charge transfer and electronic excitations,” Contributions to Plasma Physics 59, e201800184 (2019).
  751. Lotte Borkowski, Niclas Schlünzen, Jan-Philip Joost, Franziska Reiser,  and Michael Bonitz, “Doublon production in correlated materials by multiple ion impacts,” physica status solidi (b) 259, 2100511 (2022).
  752. Alina Kononov, Alexandra Olmstead, Andrew D Baczewski,  and André Schleife, “First-principles simulation of light-ion microscopy of graphene,” 2D Materials 9, 045023 (2022).
  753. Karsten Balzer and Michael Bonitz, “Neutralization dynamics of slow highly charged ions passing through graphene nanoflakes - an embedding self-energy approach,” Contrib. Plasma Phys. 61, e202100040 (2021).
  754. Anna Niggas, Janine Schwestka, Karsten Balzer, David Weichselbaum, Niclas Schlünzen, René Heller, Sascha Creutzburg, Heena Inani, Mukesh Tripathi, Carsten Speckmann, Niall McEvoy, Toma Susi, Jani Kotakoski, Ziyang Gan, Antony George, Andrey Turchanin, Michael Bonitz, Friedrich Aumayr,  and Richard A. Wilhelm, “Ion-Induced Surface Charge Dynamics in Freestanding Monolayers of Graphene and MoS2subscriptMoS2{\mathrm{MoS}}_{2}roman_MoS start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Probed by the Emission of Electrons,” Phys. Rev. Lett. 129, 086802 (2022).
  755. Egor Babaev, Asle Sudbø,  and N. W. Ashcroft, “A superconductor to superfluid phase transition in liquid metallic hydrogen,” Nature 431, 666–668 (2004).
  756. C. F. Richardson and N. W. Ashcroft, “High temperature superconductivity in metallic hydrogen: Electron-electron enhancements,” Phys. Rev. Lett. 78, 118–121 (1997a).
  757. Jeffrey M. McMahon and David M. Ceperley, “High-temperature superconductivity in atomic metallic hydrogen,” Phys. Rev. B 84, 144515 (2011).
  758. C. F. Richardson and N. W. Ashcroft, “Effective electron-electron interactions and the theory of superconductivity,” Phys. Rev. B 55, 15130–15145 (1997b).
  759. Camilla Pellegrini, Carl Kukkonen,  and Antonio Sanna, “Ab initio calculations of superconducting transition temperatures: When going beyond rpa is essential,” Phys. Rev. B 108, 064511 (2023).
  760. Chang Woo Myung, Barak Hirshberg,  and Michele Parrinello, “Prediction of a supersolid phase in high-pressure deuterium,” Phys. Rev. Lett. 128, 045301 (2022).
  761. Massimo Boninsegni and Nikolay V. Prokof’ev, “Colloquium: Supersolids: What and where are they?” Rev. Mod. Phys. 84, 759–776 (2012).
  762. M. J. MacDonald, C. A. Di Stefano, T. Döppner, L. B. Fletcher, K. A. Flippo, D. Kalantar, E. C. Merritt, S. J. Ali, P. M. Celliers, R. Heredia, S. Vonhof, G. W. Collins, J. A. Gaffney, D. O. Gericke, S. H. Glenzer, D. Kraus, A. M. Saunders, D. W. Schmidt, C. T. Wilson, R. Zacharias,  and R. W. Falcone, “The colliding planar shocks platform to study warm dense matter at the National Ignition Facility,” Physics of Plasmas 30, 062701 (2023).
  763. Barak Hirshberg, Valerio Rizzi,  and Michele Parrinello, “Path integral molecular dynamics for bosons,” Proceedings of the National Academy of Sciences 116, 21445–21449 (2019).
  764. Yotam M. Y. Feldman and Barak Hirshberg, “Quadratic scaling bosonic path integral molecular dynamics,” The Journal of Chemical Physics 159, 154107 (2023).
  765. Yunuo Xiong, “Gpu acceleration of ab initio simulations of large-scale identical particles based on path integral molecular dynamics,”  (2024), arXiv:2404.02628 [physics.comp-ph] .
  766. Linfeng Xie, HaoZhang and Lei Wang, “Ab-initio study of interacting fermions at finite temperature with neural canonical transformation,” Journal of Machine Learning 1, 38–59 (2022).
  767. Panagiotis Tolias, Fotios Kalkavouras,  and Tobias Dornheim, “Fourier–Matsubara series expansion for imaginary–time correlation functions,” The Journal of Chemical Physics 160, 181102 (2024).
  768. Tobias Dornheim, Panagiotis Tolias, Fotios Kalkavouras, Zhandos Moldabekov,  and Jan Vorberger, “Dynamic exchange-correlation effects in the strongly coupled electron liquid,”  (2024f), arXiv:2405.08480 [cond-mat.str-el] .
  769. Mandy Bethkenhagen, Abhiraj Sharma, Phanish Suryanarayana, John E. Pask, Babak Sadigh,  and Sebastien Hamel, “Properties of carbon up to 10 million kelvin from kohn-sham density functional theory molecular dynamics,” Phys. Rev. E 107, 015306 (2023).
  770. Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu, Ville Havu, Xinguo Ren, Karsten Reuter,  and Matthias Scheffler, “Ab initio molecular simulations with numeric atom-centered orbitals,” Computer Physics Communications 180, 2175–2196 (2009).
  771. P. M. Echenique, R. M. Nieminen, J. C. Ashley,  and R. H. Ritchie, “Nonlinear stopping power of an electron gas for slow ions,” Phys. Rev. A 33, 897–904 (1986).
  772. I. Nagy, A. Arnau,  and P. M. Echenique, “Nonlinear stopping power and energy-loss straggling of an interacting electron gas for slow ions,” Phys. Rev. A 40, 987–994 (1989).
  773. M. J. van Setten, F. Weigend,  and F. Evers, “The gw-method for quantum chemistry applications: Theory and implementation,” Journal of Chemical Theory and Computation 9, 232–246 (2013).
  774. C.-K. Huang, B. Molvig, B.J. Albright, E.S. Dodd, E.L. Vold, G. Kagan,  and Hoffman N.M., “Study of the ion kinetic effects in icf run-away burn using a quasi-1d hybrid model,” Phys. Plasmas 24, 022704 (2017).
  775. W.T. Taitano, B.D. Keenan, L. Chacon, Anderson S.E., H.R. Hammer,  and A.N. Simakov, “An eulerian vlasov-fokker–planck algorithm for spherical implosion simulations of inertial confinement fusion capsules,” Comp. Phys. Comm. 263, 107861 (2021).
  776. L.G. Stanton, J.N. Glosli,  and M.S. Murillo, “Multiscale molecular dynamics model for heterogeneous charged systems,” Phys. Rev. X 8, 021044 (2018).
  777. G. Dimonte and J. Daligault, “Dense plasma temperature equilibration in the binary collision approximation,” Phys. Rev. E 65, 036418 (2008).
  778. D.O. Gericke, M.S. Murillo,  and M. Schlanges, “Molecular-dynamics simulations of electron-ion temperature relaxation in a classical coulomb plasma,” Phys. Rev. Lett. 101, 135001 (2008).
  779. Paul Mason, Saumyabrata Banerjee, Jodie Smith, Thomas Butcher, Jonathan Phillips, Hauke Höppner, Dominik Möller, Klaus Ertel, Mariastefania De Vido, Ian Hollingham,  and et al., “Development of a 100 j, 10 hz laser for compression experiments at the high energy density instrument at the european xfel,” High Power Laser Science and Engineering 6, e65 (2018).
  780. A. Laso Garcia, H. Höppner, A. Pelka, C. Bähtz, E. Brambrink, S. Di Dio Cafiso, J. Dreyer, S. Göde, M. Hassan, T. Kluge,  and et al., “Relax: the helmholtz international beamline for extreme fields high-intensity short-pulse laser driver for relativistic laser–matter interaction and strong-field science using the high energy density instrument at the european x-ray free electron laser facility,” High Power Laser Science and Engineering 9, e59 (2021).
  781. L. B. Fletcher, H. J. Lee, T. Döppner, E. Galtier, B. Nagler, P. Heimann, C. Fortmann, S. LePape, T. Ma, M. Millot, A. Pak, D. Turnbull, D. A. Chapman, D. O. Gericke, J. Vorberger, T. White, G. Gregori, M. Wei, B. Barbrel, R. W. Falcone, C.-C. Kao, H. Nuhn, J. Welch, U. Zastrau, P. Neumayer, J. B. Hastings,  and S. H. Glenzer, “Ultrabright x-ray laser scattering for dynamic warm dense matter physics,” Nature Photonics 9, 274–279 (2015).
  782. L. Wollenweber, T. R. Preston, A. Descamps, V. Cerantola, A. Comley, J. H. Eggert, L. B. Fletcher, G. Geloni, D. O. Gericke, S. H. Glenzer, S. Göde, J. Hastings, O. S. Humphries, A. Jenei, O. Karnbach, Z. Konopkova, R. Loetzsch, B. Marx-Glowna, E. E. McBride, D. McGonegle, G. Monaco, B. K. Ofori-Okai, C. A. J. Palmer, C. Plückthun, R. Redmer, C. Strohm, I. Thorpe, T. Tschentscher, I. Uschmann, J. S. Wark, T. G. White, K. Appel, G. Gregori,  and U. Zastrau, “High-resolution inelastic x-ray scattering at the high energy density scientific instrument at the European X-Ray Free-Electron Laser,” Review of Scientific Instruments 92, 013101 (2021).
  783. A. Descamps, B. K. Ofori-Okai, K. Appel, V. Cerantola, A. Comley, J. H. Eggert, L. B. Fletcher, D. O. Gericke, S. Göde, O. Humphries, O. Karnbach, A. Lazicki, R. Loetzsch, D. McGonegle, C. A. J. Palmer, C. Plueckthun, T. R. Preston, R. Redmer, D. G. Senesky, C. Strohm, I. Uschmann, T. G. White, L. Wollenweber, G. Monaco, J. S. Wark, J. B. Hastings, U. Zastrau, G. Gregori, S. H. Glenzer,  and E. E. McBride, “An approach for the measurement of the bulk temperature of single crystal diamond using an x-ray free electron laser,” Scientific Reports 10, 14564 (2020).
  784. Long Yang, Lingen Huang, Stefan Assenbaum, Thomas E. Cowan, Ilja Goethel, Sebastian Göde, Thomas Kluge, Martin Rehwald, Xiayun Pan, Ulrich Schramm, Jan Vorberger, Karl Zeil, Tim Ziegler,  and Constantin Bernert, “Time-resolved optical shadowgraphy of solid hydrogen jets as a testbed to benchmark particle-in-cell simulations,” Communications Physics 6, 368 (2023).
  785. Lieselotte Obst, Sebastian Göde, Martin Rehwald, Florian-Emanuel Brack, João Branco, Stefan Bock, Michael Bussmann, Thomas E. Cowan, Chandra B. Curry, Frederico Fiuza, Maxence Gauthier, René Gebhardt, Uwe Helbig, Axel Huebl, Uwe Hübner, Arie Irman, Lev Kazak, Jongjin B. Kim, Thomas Kluge, Stephan Kraft, Markus Loeser, Josefine Metzkes, Rohini Mishra, Christian Rödel, Hans-Peter Schlenvoigt, Mathias Siebold, Josef Tiggesbäumker, Steffen Wolter, Tim Ziegler, Ulrich Schramm, Siegfried H. Glenzer,  and Karl Zeil, “Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets,” Scientific Reports 7, 10248 (2017).
  786. N. Schlünzen and M. Bonitz, “Nonequilibrium Green Functions Approach to Strongly Correlated Fermions in Lattice Systems,” Contrib. Plasma Phys. 56, 5–91 (2016).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.