Non-reciprocal breathing solitons (2405.10562v1)
Abstract: Breathing solitons consist of a fast beating wave within a compact envelope of stable shape and velocity. They manifest themselves in a variety of contexts such as plasmas, optical fibers and cold atoms, but have remained elusive when energy conservation is broken. Here, we report on the observation of breathing, unidirectional, arbitrarily long-lived solitons in non-reciprocal, non-conservative active metamaterials. Combining precision desktop experiments, numerical simulations and perturbation theory on generalizations of the sine-Gordon and nonlinear Schr\"odinger equations, we demonstrate that unidirectional breathers generically emerge in weakly nonlinear non-reciprocal materials, and that their dynamics are governed by an unstable fixed point. Crucially, breathing solitons can persist for arbitrarily long times provided: (i) this fixed point displays a bifurcation upon reachin a delicate balance between energy injection and dissipation; (ii) the initial conditions allow the dynamics to reach this bifurcation point. Our work establishes non-reciprocity as a promising avenue to generate stable nonlinear unidirectional waves, and could be generalized beyond metamaterials to optics, soft matter and superconducting circuits.
- A. J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Natl. Ac. Sc. U. S. A. 6, 410 (1920).
- V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature 118, 558 (1926).
- H. Sompolinsky and I. I. Kanter, Temporal association in asymmetric neural networks, Phys. Rev. Lett. 57, 2861 (1986).
- T. Nagatani, The physics of traffic jams, Rep. Prog. Phys. 65, 1331 (2002).
- H. Hong and S. H. Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators, Phys. Rev. Lett. 106, 054102 (2011).
- N. Hatano and D. R. Nelson, Localization transitions in non-hermitian quantum mechanics, Phys. Rev. Lett. 77, 570 (1996).
- V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres, Non-hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Phys. Rev. B 97, 10.1103/PhysRevB.97.121401 (2018).
- S. Yao and Z. Wang, Edge states and topological invariants of non-hermitian systems, Phys. Rev. Lett. 121, 086803 (2018).
- A. McDonald and A. A. Clerk, Exponentially-enhanced quantum sensing with non-hermitian lattice dynamics, Nat. Commun. 11, 5382 (2020).
- J. P. Mathew, J. D. Pino, and E. Verhagen, Synthetic gauge fields for phonon transport in a nano-optomechanical system, Nat. Nanotech. 15, 198 (2020).
- J. Del Pino, J. J. Slim, and E. Verhagen, Non-hermitian chiral phononics through optomechanically induced squeezing, Nature 606, 82 (2022).
- A. Poncet and D. Bartolo, When soft crystals defy newton’s third law: Nonreciprocal mechanics and dislocation motility, Phys. Rev. Lett. 128, 048002 (2022).
- M. I. N. Rosa and M. Ruzzene, Dynamics and topology of non-hermitian elastic lattices with non-local feedback control interactions, New J. Phys. 22, 10.1088/1367-2630/ab81b6 (2020).
- C. Scheibner, W. T. M. Irvine, and V. Vitelli, Non-hermitian band topology and skin modes in active elastic media, Phys. Rev. Lett. 125, 118001 (2020).
- W. Wang, X. Wang, and G. Ma, Non-hermitian morphing of topological modes, Nature 608, 50 (2022).
- C. Coulais, R. Fleury, and J. van Wezel, Topology and broken hermiticity, Nat. Phys. 17, 9 (2021).
- E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-hermitian systems, Rev. Mod. Phys. 93, 10.1103/RevModPhys.93.015005 (2021).
- Z. You, A. Baskaran, and M. C. Marchetti, Nonreciprocity as a generic route to traveling states, Proc. Natl. Ac. Sc. U. S. A. 117, 19767 (2020).
- S. Saha, J. Agudo-Canalejo, and R. Golestanian, Scalar active mixtures: The nonreciprocal cahn-hilliard model, Phys. Rev. X 10, 10.1103/PhysRevX.10.041009 (2020).
- B. Manda and V. Achilleos, Insensitive edge solitons in non-hermitian topological lattices, arXiv:2405.05441 (2024).
- T. Dauxois and M. Peyrard, Physics of solitons (Cambridge University Press, 2006).
- Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics (2008).
- E. A. Kuznetsov, Solitons in a parametrically unstable plasma, Akademiia Nauk SSSR Doklady 236, 575 (1977).
- V. F. Nesterenko, Propagation of nonlinear compression pulses in granular media, J. Appl. Mech. Techn. Phys. 24, 733–743 (1984).
- A. Spadoni and C. Daraio, Generation and control of sound bullets with a nonlinear acoustic lens, Proc. Natl. Ac. Sc. U. S. A. 107, 7230 (2010).
- D. M. Kochmann and K. Bertoldi, Exploiting microstructural instabilities in solids and structures: From metamaterials to structural transitions, Appl. Mech. Rev. 69, 050801 (2017).
- B. G. G. Chen, N. Upadhyaya, and V. Vitelli, Nonlinear conduction via solitons in a topological mechanical insulator, Proc. Natl. Ac. Sc. U.S.A. 111, 13004 (2014), 1404.2263 .
- N. Nadkarni, C. Daraio, and D. M. Kochmann, Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation, Phys. Rev. E 90, 023204 (2014).
- S. Janbaz and C. Coulais, Diffusive kinks turn kirigami into machines, Nat. Commun. 15, 1255 (2024).
- D. W. McLaughlin and A. C. Scott, Perturbation analysis of fluxon dynamics, Phys. Rev. A 18, 1652 (1978).
- Y. S. Kivshar and B. A. Malomed, Dynamics of solitons in nearly integrable systems, Rev. Mod. Phys. 61, 763 (1989).
- G. Boffetta and A. Osborne, Computation of the direct scattering transform for the nonlinear schroedinger equation, J. Comp. Phys. 102, 252 (1992).
- A. M. Kosevich and Y. S. Kivshar, The perturbation-induced evolution of a soliton-antisoliton pair in the sine-gordon system, Fiz. Nizk. Temp. 12, 1270 (1982).
- V. Karpman and V. Solovev, A perturbation theory for soliton systems, Physica D 3, 142 (1981).
- In accordance with notations of Faddeev and Takhtajan (1987).
- The breather velocity in the numerical solution to Eq. (2\@@italiccorr) was 2/222\sqrt{2}/2square-root start_ARG 2 end_ARG / 2, which is consistent with the 22\sqrt{2}square-root start_ARG 2 end_ARG prediction given the change of variable t→t/2→𝑡𝑡2t\to t/2italic_t → italic_t / 2 done to derive Eq. (14\@@italiccorr).
- Y. Ma, The perturbed plane‐wave solutions of the cubic schrödinger equation, Studies in Applied Mathematics 60, 43–58 (1979).
- L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer Berlin Heidelberg, 1987).
- D. Zwicker, py-pde: A python package for solving partial differential equations, J. Open Source Software 5, 2158 (2020).
- O. Gamayun and M. Semenyakin, Soliton splitting in quenched classical integrable systems, J. Phys. A 49, 335201 (2016).
- T. Herr, M. L. Gorodetsky, and T. J. Kippenberg, Dissipative kerr solitons in optical microresonators (2015).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.