Resource-Efficient Hybrid Quantum-Classical Simulation Algorithm
Abstract: Digital quantum computers promise exponential speedups in performing quantum time-evolution, providing an opportunity to simulate quantum dynamics of complex systems in physics and chemistry. However, the task of extracting desired quantum properties at intermediate time steps remains a computational bottleneck due to wavefunction collapse and no-fast-forwarding theorem. Despite significant progress towards building a Fault-Tolerant Quantum Computer (FTQC), there is still a need for resource-efficient quantum simulators. Here, we propose a hybrid simulator that enables classical computers to leverage FTQC devices and quantum time propagators to overcome this bottleneck, so as to efficiently simulate the quantum dynamics of large systems initialized in an unknown superposition of a few system eigenstates. It features no optimization subroutines and avoids barren plateau issues, while consuming fewer quantum resources compared to standard methods when many time steps are required.
- R. P. Feynman, Simulating physics with computers, Int J Theor Phys 21, 467 (1982).
- S. Lloyd, Universal Quantum Simulators, Science 273, 1073 (1996).
- I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153 (2014).
- B. Fauseweh, Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges, Nat Commun 15, 2123 (2024).
- M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Physics Letters A 146, 319 (1990).
- M. Suzuki, General theory of fractal path integrals with applications to many-body theories and statistical physics, Journal of Mathematical Physics 32, 400 (1991).
- A. M. Childs and Y. Su, Nearly Optimal Lattice Simulation by Product Formulas, Phys. Rev. Lett. 123, 050503 (2019).
- A. M. Childs and N. Wiebe, Hamiltonian simulation using linear combinations of unitary operations, Quantum Info. Comput. 12, 901 (2012).
- A. M. Childs and D. W. Berry, Black-box Hamiltonian simulation and unitary implementation, QIC 12, 29 (2012).
- G. H. Low and I. L. Chuang, Optimal Hamiltonian Simulation by Quantum Signal Processing, Phys. Rev. Lett. 118, 010501 (2017).
- G. H. Low and I. L. Chuang, Hamiltonian Simulation by Qubitization, Quantum 3, 163 (2019).
- A. M. Childs, A. Ostrander, and Y. Su, Faster quantum simulation by randomization, Quantum 3, 182 (2019).
- E. Campbell, Random Compiler for Fast Hamiltonian Simulation, Phys. Rev. Lett. 123, 070503 (2019).
- Y. Ouyang, D. R. White, and E. T. Campbell, Compilation by stochastic Hamiltonian sparsification, Quantum 4, 235 (2020).
- D. An, D. Fang, and L. Lin, Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics and Superconvergence for Schrödinger Equation, Quantum 6, 690 (2022).
- G. H. Low and N. Wiebe, Hamiltonian Simulation in the Interaction Picture (2019), arxiv:1805.00675 .
- A. Rajput, A. Roggero, and N. Wiebe, Hybridized Methods for Quantum Simulation in the Interaction Picture, Quantum 6, 780 (2022).
- Y.-H. Chen, A. Kalev, and I. Hen, Quantum Algorithm for Time-Dependent Hamiltonian Simulation by Permutation Expansion, PRX Quantum 2, 030342 (2021).
- A. M. Childs and R. Kothari, Limitations on the simulation of non-sparse hamiltonians, Quantum Info. Comput. 10, 669 (2010).
- P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).
- D. E. Gottesman, Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, California Institute of Technology (1997).
- D. A. Lidar and T. A. Brun, eds., Quantum Error Correction, illustrated edition ed. (Cambridge University Press, Cambridge, United Kingdom ; New York, 2013).
- E. Campbell, A series of fast-paced advances in Quantum Error Correction, Nat Rev Phys 6, 160 (2024).
- K. Bharti and T. Haug, Quantum-assisted simulator, Phys. Rev. A 104, 042418 (2021).
- T. Haug and K. Bharti, Generalized quantum assisted simulator, Quantum Sci. Technol. 7, 045019 (2022).
- Y. Li and S. C. Benjamin, Efficient Variational Quantum Simulator Incorporating Active Error Minimization, Phys. Rev. X 7, 021050 (2017).
- M. Benedetti, M. Fiorentini, and M. Lubasch, Hardware-efficient variational quantum algorithms for time evolution, Phys. Rev. Research 3, 033083 (2021).
- S. Barison, F. Vicentini, and G. Carleo, An efficient quantum algorithm for the time evolution of parameterized circuits, Quantum 5, 512 (2021).
- A. D. McLachlan and M. A. Ball, Time-Dependent Hartree—Fock Theory for Molecules, Rev. Mod. Phys. 36, 844 (1964).
- D. Aharonov, V. Jones, and Z. Landau, A Polynomial Quantum Algorithm for Approximating the Jones Polynomial, Algorithmica 55, 395 (2009).
- K. Mitarai and K. Fujii, Methodology for replacing indirect measurements with direct measurements, Phys. Rev. Res. 1, 013006 (2019).
- V. V. Shende and I. L. Markov, On the CNOT-cost of TOFFOLI gates, Quantum Info. Comput. 9, 461 (2009).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Courier Corporation, 1996).
- P. Jordan and E. Wigner, Über das Paulische Äquivalenzverbot, Z. Physik 47, 631 (1928).
- M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nat. Phys. 17, 675 (2021).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.