Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Totally real algebraic numbers in generalized Mandelbrot set (2405.10395v1)

Published 16 May 2024 in math.DS and math.NT

Abstract: In this article, we study some potential theoretical and topological aspects of the generalized Mandelbrot set introduced by Baker and DeMarco. For $\alpha$ real, we study the set of all totally real algebraic parameters $c$ such that $\alpha$ is preperiodic under the iteration of the one-parameter family $f_c(x) = x2 + c$. We show that when $|\alpha| < 2$ and rational then the set of totally real algebraic parameters $c$ with this property is finite, whereas if $|\alpha| \geq 2$ and rational then this set is countably infinite. As an unexpected consequence of this study, we also show that when $|\alpha| \geq 2$ then parameters $c$ such that $\alpha$ is $f_c$-periodic are necessarily real. As a special case, we classify all totally real algebraic integers $c$ such that $\alpha = \pm1$ is preperiodic.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. M. Baker and L. DeMarco. Preperiodic points and unlikely intersections. Duke Math. J. 159 (2011), no. 1, 1–29.
  2. A. F. Beardon. Iteration of rational functions. Graduate Texts in Mathematics, Vol. 132. Springer-Verlag, New York, 1991.
  3. R. L. Benedetto. Dynamics in one non-archimedean variable. Graduate Studies in Mathematics, Vol. 198. American Mathematical Society, Providence, RI, 2019.
  4. M. H. Baker and L-C. Hsia. Canonical heights, transfinite diameters, and polynomial dynamics. J. Reine Angew. Math. 585 (2005), 61–92.
  5. M. Baker and R. Rumely. Potential theory and dynamics on the Berkovich projective line. Mathematical Surveys and Monographs, Vol. 159. American Mathematical Society, Providence, RI, 2010.
  6. L. Carleson and T. W. Gamelin. Complex dynamics. Springer-Verlag, New York, 1993.
  7. G. S. Call and S. W. Goldstine. Canonical heights on projective space. J. Number Theory. 63 (1997), no. 2, 211–243.
  8. A. Douady and J. H. Hubbard. Étude dynamique des polynômes complexes. Partie I. Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], Vol. 84. Université de Paris-Sud, Département de Mathématiques, Orsay, 1984.
  9. Common preperiodic points for quadratic polynomials. J. Mod. Dyn. 18 (2022), 363–413.
  10. P. Fili. A metric of mutual energy and unlikely intersections for dynamical systems. arXiv:1708.08403 (2017).
  11. C. Favre. and T. Gauthier. The arithmetic of polynomial dynamical pairs. Annals of Mathematics Studies, Vol. 214. Princeton University Press, Princeton, NJ, 2022.
  12. C. Favre and J. Rivera-Letelier. Équidistribution quantitative des points de petite hauteur sur la droite projective. Math. Ann. 335 (2006), no.2, 311–361.
  13. D. Ghioca, L.-C. Hsia and  T. J. Tucker. Preperiodic points for families of polynomials. Algebra Number Theory. 7 (2013), no. 3, 701–732.
  14. L. Kronecker. Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. J. Reine Angew. Math. 53 (1857), 173–175.
  15. C. Noytaptim and C. Petsche. Totally real algebraic integers in short intervals,Jacobi polynomials, and unicritical families inarithmetic dynamics. Bull. Lond. Math. Soc. 56 (2024), no. 1, 364–379.
  16. T. Ransford. Potential theory in the complex plane. London Mathematical Society Student Texts, Vol. 28. Cambridge University Press, Cambridge, 1995.
  17. R. S. Rumely. Capacity theory on algebraic curves. Lecture Notes in Mathematics, Vol. 1378. Springer-Verlag, Berlin, 1989.
  18. R. Rumely. The Fekete-Szegő theorem with splitting conditions. II. Acta Arith. 103 (2002), no. 4, 347–410.
  19. R. S. Rumely. Capacity theory with local rationality: The strong Fekete-Szegö theorem on curves. Mathematical Surveys and Monographs, Vol. 193. American Mathematical Society, Providence, RI, 2013.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: