Totally real algebraic numbers in generalized Mandelbrot set (2405.10395v1)
Abstract: In this article, we study some potential theoretical and topological aspects of the generalized Mandelbrot set introduced by Baker and DeMarco. For $\alpha$ real, we study the set of all totally real algebraic parameters $c$ such that $\alpha$ is preperiodic under the iteration of the one-parameter family $f_c(x) = x2 + c$. We show that when $|\alpha| < 2$ and rational then the set of totally real algebraic parameters $c$ with this property is finite, whereas if $|\alpha| \geq 2$ and rational then this set is countably infinite. As an unexpected consequence of this study, we also show that when $|\alpha| \geq 2$ then parameters $c$ such that $\alpha$ is $f_c$-periodic are necessarily real. As a special case, we classify all totally real algebraic integers $c$ such that $\alpha = \pm1$ is preperiodic.
- M. Baker and L. DeMarco. Preperiodic points and unlikely intersections. Duke Math. J. 159 (2011), no. 1, 1–29.
- A. F. Beardon. Iteration of rational functions. Graduate Texts in Mathematics, Vol. 132. Springer-Verlag, New York, 1991.
- R. L. Benedetto. Dynamics in one non-archimedean variable. Graduate Studies in Mathematics, Vol. 198. American Mathematical Society, Providence, RI, 2019.
- M. H. Baker and L-C. Hsia. Canonical heights, transfinite diameters, and polynomial dynamics. J. Reine Angew. Math. 585 (2005), 61–92.
- M. Baker and R. Rumely. Potential theory and dynamics on the Berkovich projective line. Mathematical Surveys and Monographs, Vol. 159. American Mathematical Society, Providence, RI, 2010.
- L. Carleson and T. W. Gamelin. Complex dynamics. Springer-Verlag, New York, 1993.
- G. S. Call and S. W. Goldstine. Canonical heights on projective space. J. Number Theory. 63 (1997), no. 2, 211–243.
- A. Douady and J. H. Hubbard. Étude dynamique des polynômes complexes. Partie I. Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], Vol. 84. Université de Paris-Sud, Département de Mathématiques, Orsay, 1984.
- Common preperiodic points for quadratic polynomials. J. Mod. Dyn. 18 (2022), 363–413.
- P. Fili. A metric of mutual energy and unlikely intersections for dynamical systems. arXiv:1708.08403 (2017).
- C. Favre. and T. Gauthier. The arithmetic of polynomial dynamical pairs. Annals of Mathematics Studies, Vol. 214. Princeton University Press, Princeton, NJ, 2022.
- C. Favre and J. Rivera-Letelier. Équidistribution quantitative des points de petite hauteur sur la droite projective. Math. Ann. 335 (2006), no.2, 311–361.
- D. Ghioca, L.-C. Hsia and T. J. Tucker. Preperiodic points for families of polynomials. Algebra Number Theory. 7 (2013), no. 3, 701–732.
- L. Kronecker. Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. J. Reine Angew. Math. 53 (1857), 173–175.
- C. Noytaptim and C. Petsche. Totally real algebraic integers in short intervals,Jacobi polynomials, and unicritical families inarithmetic dynamics. Bull. Lond. Math. Soc. 56 (2024), no. 1, 364–379.
- T. Ransford. Potential theory in the complex plane. London Mathematical Society Student Texts, Vol. 28. Cambridge University Press, Cambridge, 1995.
- R. S. Rumely. Capacity theory on algebraic curves. Lecture Notes in Mathematics, Vol. 1378. Springer-Verlag, Berlin, 1989.
- R. Rumely. The Fekete-Szegő theorem with splitting conditions. II. Acta Arith. 103 (2002), no. 4, 347–410.
- R. S. Rumely. Capacity theory with local rationality: The strong Fekete-Szegö theorem on curves. Mathematical Surveys and Monographs, Vol. 193. American Mathematical Society, Providence, RI, 2013.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.