Primordial black holes captured by neutron stars: simulations in general relativity
Abstract: We present self-consistent numerical simulations in general relativity of putative primordial black holes inside neutron stars. Complementing a companion paper in which we assumed the black hole mass $m$ to be much smaller than the mass $M_$ of the neutron star, thereby justifying a point-mass treatment, we here consider black holes with masses large enough so that their effect on the neutron star cannot be neglected. We develop and employ several new numerical techniques, including initial data describing boosted black holes in neutron-star spacetimes, a relativistic determination of the escape speed, and a gauge condition that keeps the black hole hole at a fixed coordinate location. We then perform numerical simulations that highlight different aspects of the capture of primordial black holes by neutron stars. In particular, we simulate the initial passage of the black hole through the star, demonstrating that the neutron star remains dynamically stable provided the black-hole mass is sufficiently small, $m \lesssim 0.05 M_$. We also model the late evolution of a black hole oscillating about the center of an initially stable neutron star while accreting stellar mass and ultimately triggering gravitational collapse.
- Y. B. Zel’dovich and I. D. Novikov, The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model, Soviet Ast. 10, 602 (1967).
- S. W. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. R. Astron. Soc. 152, 75 (1971).
- B. J. Carr and S. W. Hawking, Black holes in the early Universe, Mon. Not. R. Astron. Soc. 168, 399 (1974).
- M. Y. Khlopov, Primordial black holes, Research in Astronomy and Astrophysics 10, 495 (2010), arXiv:0801.0116 [astro-ph] .
- B. Carr and F. Kühnel, Primordial Black Holes as Dark Matter: Recent Developments, Annual Review of Nuclear and Particle Science 70, 355 (2020), arXiv:2006.02838 [astro-ph.CO] .
- A. A. Jackson and M. P. Ryan, Was the Tungus Event due to a Black Hole?, Nature 245, 88 (1973).
- W. H. Beasley and B. A. Tinsley, Tungus event was not caused by a black hole, Nature 250, 555 (1974).
- G. M. Fuller, A. Kusenko, and V. Takhistov, Primordial Black Holes and r𝑟ritalic_r-Process Nucleosynthesis, Phys. Rev. Lett. 119, 061101 (2017), arXiv:1704.01129 [astro-ph.HE] .
- J. Bramante, T. Linden, and Y.-D. Tsai, Searching for dark matter with neutron star mergers and quiet kilonovae, Phys. Rev. D 97, 055016 (2018), arXiv:1706.00001 [hep-ph] .
- M. A. Abramowicz, M. Bejger, and M. Wielgus, Collisions of Neutron Stars with Primordial Black Holes as Fast Radio Bursts Engines, Astrophys. J. 868, 17 (2018), arXiv:1704.05931 [astro-ph.HE] .
- D. W. P. Amaral and E. D. Schiappacasse, Rescuing The Primordial Black Holes all-Dark Matter Hypothesis from The Fast Radio Bursts Tension, arXiv e-prints , arXiv:2312.09285 (2023), arXiv:2312.09285 [hep-ph] .
- T. W. Baumgarte and S. L. Shapiro, Could long-period transients be powered by primordial black hole capture?, Phys. Rev. D 109, 063004 (2024a), arXiv:2402.11019 [astro-ph.HE] .
- V. Takhistov, Transmuted gravity wave signals from primordial black holes, Physics Letters B 782, 77 (2018), arXiv:1707.05849 [astro-ph.CO] .
- V. Takhistov, G. M. Fuller, and A. Kusenko, Test for the Origin of Solar Mass Black Holes, Phys. Rev. Lett. 126, 071101 (2021), arXiv:2008.12780 [astro-ph.HE] .
- V. Takhistov, Positrons from primordial black hole microquasars and gamma-ray bursts, Physics Letters B 789, 538 (2019), arXiv:1710.09458 [astro-ph.HE] .
- F. Capela, M. Pshirkov, and P. Tinyakov, Constraints on primordial black holes as dark matter candidates from capture by neutron stars, Phys. Rev. D 87, 123524 (2013), arXiv:1301.4984 [astro-ph.CO] .
- Y. Génolini, P. D. Serpico, and P. Tinyakov, Revisiting primordial black hole capture into neutron stars, Phys. Rev. D 102, 083004 (2020), arXiv:2006.16975 [astro-ph.HE] .
- R. Caiozzo, G. Bertone, and F. Kühnel, Revisiting Primordial Black Hole Capture by Neutron Stars, arXiv e-prints , arXiv:2404.08057 (2024), arXiv:2404.08057 [astro-ph.HE] .
- T. W. Baumgarte and S. L. Shapiro, Primordial black holes captured by neutron stars: relativistic point-mass treatment, arXiv e-prints , arXiv:2404.08735 (2024b), arXiv:2404.08735 [gr-qc] .
- C. J. Horowitz and S. Reddy, Gravitational Waves from Compact Dark Objects in Neutron Stars, Phys. Rev. Lett. 122, 071102 (2019), arXiv:1902.04597 [astro-ph.HE] .
- Z.-C. Zou and Y.-F. Huang, Gravitational-wave Emission from a Primordial Black Hole Inspiraling inside a Compact Star: A Novel Probe for Dense Matter Equation of State, Astrophys. J. Lett. 928, L13 (2022), arXiv:2201.00369 [astro-ph.HE] .
- W. E. East and L. Lehner, Fate of a neutron star with an endoparasitic black hole and implications for dark matter, Phys. Rev. D 100, 124026 (2019), arXiv:1909.07968 [gr-qc] .
- C. B. Richards, T. W. Baumgarte, and S. L. Shapiro, Accretion onto a small black hole at the center of a neutron star, Phys. Rev. D 103, 104009 (2021a).
- S. C. Schnauck, T. W. Baumgarte, and S. L. Shapiro, Accretion onto black holes inside neutron stars with piecewise-polytropic equations of state: Analytic and numerical treatments, Phys. Rev. D 104, 123021 (2021), arXiv:2110.08285 [astro-ph.HE] .
- P. Pani and A. Loeb, Tidal capture of a primordial black hole by a neutron star: implications for constraints on dark matter, J. Cosmology Astropart. Phys 2014, 026 (2014), arXiv:1401.3025 [astro-ph.CO] .
- J. M. Bowen and J. York, James W., Time-asymmetric initial data for black holes and black-hole collisions, Phys. Rev. D 21, 2047 (1980).
- J. R. Oppenheimer and G. M. Volkoff, On Massive Neutron Cores, Phys. Rev. 55, 374 (1939).
- T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, 2010).
- S. Brandt and B. Brügmann, A Simple Construction of Initial Data for Multiple Black Holes, Phys. Rev. Lett. 78, 3606 (1997).
- T. Nakamura, K. Oohara, and Y. Kojima, General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes, Progress of Theoretical Physics Supplement 90, 1 (1987).
- M. Shibata and T. Nakamura, Evolution of three-dimensional gravitational waves: Harmonic slicing case, Phys. Rev. D 52, 5428 (1995).
- T. W. Baumgarte and S. L. Shapiro, Numerical integration of Einstein’s field equations, Phys. Rev. D 59, 024007 (1999), arXiv:gr-qc/9810065 [gr-qc] .
- M. Shibata, K. Uryū, and J. L. Friedman, Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits, Phys. Rev. D 70, 044044 (2004), arXiv:gr-qc/0407036 [gr-qc] .
- E. Gourgoulhon, 3+1 Formalism in General Relativity (Springer, Berlin, 2012).
- T. W. Baumgarte, P. J. Montero, and E. Müller, Numerical relativity in spherical polar coordinates: Off-center simulations, Phys. Rev. D 91, 064035 (2015), arXiv:1501.05259 [gr-qc] .
- P. J. Montero, T. W. Baumgarte, and E. Müller, General relativistic hydrodynamics in curvilinear coordinates, Phys. Rev. D 89, 084043 (2014), arXiv:1309.7808 [gr-qc] .
- A. Harten, P. D. Lax, and v. B. Leer, On upstream differencing and Godunov type methods for hyperbolic conservation laws, SIAM Rev. 25, 35 (1983).
- B. Einfeldt, On Godunov methods for gas dynamics, SIAM J. Numer. Anal. 25, 294 (1988).
- B. van Leer, Towards the ultimate conservative difference scheme: IV. A new approach to numerical convection, Journal of Computational Physics 23, 276 (1977).
- I. Ruchlin, Z. B. Etienne, and T. W. Baumgarte, SENR/NRPy+: Numerical relativity in singular curvilinear coordinate systems, Phys. Rev. D 97, 064036 (2018), arXiv:1712.07658 [gr-qc] .
- B. Brügmann, W. Tichy, and N. Jansen, Numerical Simulation of Orbiting Black Holes, Phys. Rev. Lett. 92, 211101 (2004), arXiv:gr-qc/0312112 [gr-qc] .
- T. W. Baumgarte and S. G. Naculich, Analytical representation of a black hole puncture solution, Phys. Rev. D 75, 067502 (2007), arXiv:gr-qc/0701037 [gr-qc] .
- K. A. Dennison and T. W. Baumgarte, A simple family of analytical trumpet slices of the Schwarzschild spacetime, Classical and Quantum Gravity 31, 117001 (2014), arXiv:1403.5484 [gr-qc] .
- T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Starting from Scratch (Cambridge University Press, 2021).
- B. D. Farris, Y. T. Liu, and S. L. Shapiro, Binary black hole mergers in gaseous environments: “Binary Bondi“ and “binary Bondi-Hoyle-Lyttleton” accretion, Phys. Rev. D 81, 084008 (2010), arXiv:0912.2096 [astro-ph.HE] .
- A. Aguayo-Ortiz, O. Sarbach, and E. Tejeda, Choked accretion onto a Kerr black hole, Phys. Rev. D 103, 023003 (2021a), arXiv:2009.06653 [astro-ph.HE] .
- H. Bondi, On spherically symmetrical accretion, Mon. Not. R. Astron. Soc. 112, 195 (1952).
- F. C. Michel, Accretion of Matter by Condensed Objects, Astrophys. Space Sci. 15, 153 (1972).
- C. B. Richards, T. W. Baumgarte, and S. L. Shapiro, Relativistic Bondi accretion for stiff equations of state, Mon. Not. R. Astron. Soc. 502, 3003 (2021b), arXiv:2101.08797 [astro-ph.HE] .
- A. Ashtekar and B. Krishnan, Dynamical horizons and their properties, Phys. Rev. D 68, 104030 (2003), arXiv:gr-qc/0308033 [gr-qc] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.