Papers
Topics
Authors
Recent
Search
2000 character limit reached

Primordial black holes captured by neutron stars: simulations in general relativity

Published 16 May 2024 in gr-qc and astro-ph.HE | (2405.10365v1)

Abstract: We present self-consistent numerical simulations in general relativity of putative primordial black holes inside neutron stars. Complementing a companion paper in which we assumed the black hole mass $m$ to be much smaller than the mass $M_$ of the neutron star, thereby justifying a point-mass treatment, we here consider black holes with masses large enough so that their effect on the neutron star cannot be neglected. We develop and employ several new numerical techniques, including initial data describing boosted black holes in neutron-star spacetimes, a relativistic determination of the escape speed, and a gauge condition that keeps the black hole hole at a fixed coordinate location. We then perform numerical simulations that highlight different aspects of the capture of primordial black holes by neutron stars. In particular, we simulate the initial passage of the black hole through the star, demonstrating that the neutron star remains dynamically stable provided the black-hole mass is sufficiently small, $m \lesssim 0.05 M_$. We also model the late evolution of a black hole oscillating about the center of an initially stable neutron star while accreting stellar mass and ultimately triggering gravitational collapse.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Y. B. Zel’dovich and I. D. Novikov, The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model, Soviet Ast. 10, 602 (1967).
  2. S. W. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. R. Astron. Soc. 152, 75 (1971).
  3. B. J. Carr and S. W. Hawking, Black holes in the early Universe, Mon. Not. R. Astron. Soc. 168, 399 (1974).
  4. M. Y. Khlopov, Primordial black holes, Research in Astronomy and Astrophysics 10, 495 (2010), arXiv:0801.0116 [astro-ph] .
  5. B. Carr and F. Kühnel, Primordial Black Holes as Dark Matter: Recent Developments, Annual Review of Nuclear and Particle Science 70, 355 (2020), arXiv:2006.02838 [astro-ph.CO] .
  6. A. A. Jackson and M. P. Ryan, Was the Tungus Event due to a Black Hole?, Nature 245, 88 (1973).
  7. W. H. Beasley and B. A. Tinsley, Tungus event was not caused by a black hole, Nature 250, 555 (1974).
  8. G. M. Fuller, A. Kusenko, and V. Takhistov, Primordial Black Holes and r𝑟ritalic_r-Process Nucleosynthesis, Phys. Rev. Lett. 119, 061101 (2017), arXiv:1704.01129 [astro-ph.HE] .
  9. J. Bramante, T. Linden, and Y.-D. Tsai, Searching for dark matter with neutron star mergers and quiet kilonovae, Phys. Rev. D 97, 055016 (2018), arXiv:1706.00001 [hep-ph] .
  10. M. A. Abramowicz, M. Bejger, and M. Wielgus, Collisions of Neutron Stars with Primordial Black Holes as Fast Radio Bursts Engines, Astrophys. J. 868, 17 (2018), arXiv:1704.05931 [astro-ph.HE] .
  11. D. W. P. Amaral and E. D. Schiappacasse, Rescuing The Primordial Black Holes all-Dark Matter Hypothesis from The Fast Radio Bursts Tension, arXiv e-prints , arXiv:2312.09285 (2023), arXiv:2312.09285 [hep-ph] .
  12. T. W. Baumgarte and S. L. Shapiro, Could long-period transients be powered by primordial black hole capture?, Phys. Rev. D 109, 063004 (2024a), arXiv:2402.11019 [astro-ph.HE] .
  13. V. Takhistov, Transmuted gravity wave signals from primordial black holes, Physics Letters B 782, 77 (2018), arXiv:1707.05849 [astro-ph.CO] .
  14. V. Takhistov, G. M. Fuller, and A. Kusenko, Test for the Origin of Solar Mass Black Holes, Phys. Rev. Lett. 126, 071101 (2021), arXiv:2008.12780 [astro-ph.HE] .
  15. V. Takhistov, Positrons from primordial black hole microquasars and gamma-ray bursts, Physics Letters B 789, 538 (2019), arXiv:1710.09458 [astro-ph.HE] .
  16. F. Capela, M. Pshirkov, and P. Tinyakov, Constraints on primordial black holes as dark matter candidates from capture by neutron stars, Phys. Rev. D 87, 123524 (2013), arXiv:1301.4984 [astro-ph.CO] .
  17. Y. Génolini, P. D. Serpico, and P. Tinyakov, Revisiting primordial black hole capture into neutron stars, Phys. Rev. D 102, 083004 (2020), arXiv:2006.16975 [astro-ph.HE] .
  18. R. Caiozzo, G. Bertone, and F. Kühnel, Revisiting Primordial Black Hole Capture by Neutron Stars, arXiv e-prints , arXiv:2404.08057 (2024), arXiv:2404.08057 [astro-ph.HE] .
  19. T. W. Baumgarte and S. L. Shapiro, Primordial black holes captured by neutron stars: relativistic point-mass treatment, arXiv e-prints , arXiv:2404.08735 (2024b), arXiv:2404.08735 [gr-qc] .
  20. C. J. Horowitz and S. Reddy, Gravitational Waves from Compact Dark Objects in Neutron Stars, Phys. Rev. Lett. 122, 071102 (2019), arXiv:1902.04597 [astro-ph.HE] .
  21. Z.-C. Zou and Y.-F. Huang, Gravitational-wave Emission from a Primordial Black Hole Inspiraling inside a Compact Star: A Novel Probe for Dense Matter Equation of State, Astrophys. J. Lett. 928, L13 (2022), arXiv:2201.00369 [astro-ph.HE] .
  22. W. E. East and L. Lehner, Fate of a neutron star with an endoparasitic black hole and implications for dark matter, Phys. Rev. D 100, 124026 (2019), arXiv:1909.07968 [gr-qc] .
  23. C. B. Richards, T. W. Baumgarte, and S. L. Shapiro, Accretion onto a small black hole at the center of a neutron star, Phys. Rev. D 103, 104009 (2021a).
  24. S. C. Schnauck, T. W. Baumgarte, and S. L. Shapiro, Accretion onto black holes inside neutron stars with piecewise-polytropic equations of state: Analytic and numerical treatments, Phys. Rev. D 104, 123021 (2021), arXiv:2110.08285 [astro-ph.HE] .
  25. P. Pani and A. Loeb, Tidal capture of a primordial black hole by a neutron star: implications for constraints on dark matter, J. Cosmology Astropart. Phys 2014, 026 (2014), arXiv:1401.3025 [astro-ph.CO] .
  26. J. M. Bowen and J. York, James W., Time-asymmetric initial data for black holes and black-hole collisions, Phys. Rev. D 21, 2047 (1980).
  27. J. R. Oppenheimer and G. M. Volkoff, On Massive Neutron Cores, Phys. Rev. 55, 374 (1939).
  28. T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, 2010).
  29. S. Brandt and B. Brügmann, A Simple Construction of Initial Data for Multiple Black Holes, Phys. Rev. Lett. 78, 3606 (1997).
  30. T. Nakamura, K. Oohara, and Y. Kojima, General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes, Progress of Theoretical Physics Supplement 90, 1 (1987).
  31. M. Shibata and T. Nakamura, Evolution of three-dimensional gravitational waves: Harmonic slicing case, Phys. Rev. D 52, 5428 (1995).
  32. T. W. Baumgarte and S. L. Shapiro, Numerical integration of Einstein’s field equations, Phys. Rev. D 59, 024007 (1999), arXiv:gr-qc/9810065 [gr-qc] .
  33. M. Shibata, K. Uryū, and J. L. Friedman, Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits, Phys. Rev. D 70, 044044 (2004), arXiv:gr-qc/0407036 [gr-qc] .
  34. E. Gourgoulhon, 3+1 Formalism in General Relativity (Springer, Berlin, 2012).
  35. T. W. Baumgarte, P. J. Montero, and E. Müller, Numerical relativity in spherical polar coordinates: Off-center simulations, Phys. Rev. D 91, 064035 (2015), arXiv:1501.05259 [gr-qc] .
  36. P. J. Montero, T. W. Baumgarte, and E. Müller, General relativistic hydrodynamics in curvilinear coordinates, Phys. Rev. D 89, 084043 (2014), arXiv:1309.7808 [gr-qc] .
  37. A. Harten, P. D. Lax, and v. B. Leer, On upstream differencing and Godunov type methods for hyperbolic conservation laws, SIAM Rev. 25, 35 (1983).
  38. B. Einfeldt, On Godunov methods for gas dynamics, SIAM J. Numer. Anal. 25, 294 (1988).
  39. B. van Leer, Towards the ultimate conservative difference scheme: IV. A new approach to numerical convection, Journal of Computational Physics 23, 276 (1977).
  40. I. Ruchlin, Z. B. Etienne, and T. W. Baumgarte, SENR/NRPy+: Numerical relativity in singular curvilinear coordinate systems, Phys. Rev. D 97, 064036 (2018), arXiv:1712.07658 [gr-qc] .
  41. B. Brügmann, W. Tichy, and N. Jansen, Numerical Simulation of Orbiting Black Holes, Phys. Rev. Lett. 92, 211101 (2004), arXiv:gr-qc/0312112 [gr-qc] .
  42. T. W. Baumgarte and S. G. Naculich, Analytical representation of a black hole puncture solution, Phys. Rev. D 75, 067502 (2007), arXiv:gr-qc/0701037 [gr-qc] .
  43. K. A. Dennison and T. W. Baumgarte, A simple family of analytical trumpet slices of the Schwarzschild spacetime, Classical and Quantum Gravity 31, 117001 (2014), arXiv:1403.5484 [gr-qc] .
  44. T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Starting from Scratch (Cambridge University Press, 2021).
  45. B. D. Farris, Y. T. Liu, and S. L. Shapiro, Binary black hole mergers in gaseous environments: “Binary Bondi“ and “binary Bondi-Hoyle-Lyttleton” accretion, Phys. Rev. D 81, 084008 (2010), arXiv:0912.2096 [astro-ph.HE] .
  46. A. Aguayo-Ortiz, O. Sarbach, and E. Tejeda, Choked accretion onto a Kerr black hole, Phys. Rev. D 103, 023003 (2021a), arXiv:2009.06653 [astro-ph.HE] .
  47. H. Bondi, On spherically symmetrical accretion, Mon. Not. R. Astron. Soc. 112, 195 (1952).
  48. F. C. Michel, Accretion of Matter by Condensed Objects, Astrophys. Space Sci. 15, 153 (1972).
  49. C. B. Richards, T. W. Baumgarte, and S. L. Shapiro, Relativistic Bondi accretion for stiff equations of state, Mon. Not. R. Astron. Soc. 502, 3003 (2021b), arXiv:2101.08797 [astro-ph.HE] .
  50. A. Ashtekar and B. Krishnan, Dynamical horizons and their properties, Phys. Rev. D 68, 104030 (2003), arXiv:gr-qc/0308033 [gr-qc] .
Citations (2)

Summary

  • The paper applies numerical general relativity to simulate the capture of primordial black holes by neutron stars.
  • The paper introduces innovative numerical techniques, including gauge conditions to fix the black hole’s coordinate location for improved simulation stability.
  • The paper finds that neutron stars remain stable when hosting low-mass black holes but may collapse with higher mass accretion, emitting potential gravitational wave signals.

Analysis of "Primordial black holes captured by neutron stars: simulations in general relativity"

The paper "Primordial black holes captured by neutron stars: simulations in general relativity" explores the theoretical implications of primordial black holes (PBHs) interacting with neutron stars. The study is motivated by the hypothesized presence of PBHs in the early Universe, which, despite the absence of direct evidence for their existence, remain plausible candidates for partially or completely explaining dark matter.

Key Contributions

  1. Integration of General Relativity: The authors employ numerical simulations within the framework of general relativity to model the capture process of PBHs by neutron stars. This approach is particularly pertinent given the significant gravitational fields involved, which necessitate a fully relativistic treatment, especially for black holes with non-negligible masses relative to those of neutron stars.
  2. Novel Numerical Techniques: The research incorporates several innovative numerical techniques. These include initial data sets that describe boosted black holes within neutron-star spacetimes, offering a more accurate description of their dynamic interactions. The implementation of a gauge condition is particularly noteworthy as it allows the black hole to remain at a fixed coordinate location, facilitating more stable and accurate numerical simulations.
  3. Simulations and Results: The paper contrasts two scenarios—PBHs of varying masses traversing neutron stars and their subsequent evolutions. A primary result is that neutron stars remain dynamically stable after being pierced by a black hole if the black hole's mass is relatively small, approximately 5% of the neutron star's mass. Larger masses can result in the black hole accreting enough stellar material to trigger the collapse of the neutron star.
  4. Late Evolution and Gravitational Collapse: For later stages of evolution where the PBH oscillates about the neutron star's center while accreting mass, the simulations provide insights into the conditions leading to eventual collapse. The black hole emits gravitational waves during its oscillatory inspiral phase, which, if detectable, may provide empirical evidence for PBHs and insights into the equation of state of nuclear matter within neutron stars.

Implications

  • Theoretical Insights: The study enhances the theoretical understanding of PBHs' interactions with stellar bodies. This includes refinements to existing models, offering improvements over simpler point-source approximations used in literature for black hole capture processes.
  • Impact on Astronomy and Astrophysics: Practically, the findings suggest potential observable phenomena, such as gravitational waves and other signatures from neutron stars interacting with PBHs. Future detections could help constrain the properties and distribution of PBHs, contributing to broader efforts in identifying dark matter components.

Future Directions

The research indicates several avenues for future exploration. One direction involves refining simulations to consider more complex environments or initial conditions, such as rotational dynamics or magnetic fields within neutron stars. Another potentially fertile area is the collaborative utilization of upcoming observational data from advancements in gravitational wave astronomy to search for empirical signatures predicted by the simulations.

Overall, the work by Baumgarte and Shapiro offers a detailed and methodologically sound exploration of PBHs within a complex astrophysical context, contributing significantly to the field's understanding of these elusive objects and their potential role in cosmic structure and dark matter research.

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 3 likes about this paper.