Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Noise-resilient and resource-efficient hybrid algorithm for robust quantum gap estimation (2405.10306v3)

Published 16 May 2024 in quant-ph and cond-mat.str-el

Abstract: We present a hybrid quantum algorithm for estimating gaps in many-body energy spectra, supported by an analytic proof of its inherent resilience to state preparation and measurement errors, as well as mid-circuit multi-qubit depolarizing noise. Our analysis extends to a broader class of Markovian noise, employing error mitigation strategies that optimize the utilization of quantum resources. By integrating trial-state optimization and classical signal processing into the algorithm, we amplify the signal peak corresponding to the exact target gap beyond the error threshold, thereby significantly reducing gap estimate errors. The algorithm's robustness is demonstrated through noisy simulations on the Qiskit Aer simulator and demonstrations on IBM Quantum processors. These results underscore the potential to enable accurate quantum simulations on near-term noisy quantum devices without resource-intensive error correction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. A. Kitaev, Quantum measurements and the Abelian stabilizer problem, Electr. Coll. Comput. Complex. TR96-003 (1996).
  2. S. Lloyd, Universal quantum simulators, Science 273, 1073 (1996).
  3. D. S. Abrams and S. Lloyd, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors, Phys. Rev. Lett. 83, 5162 (1999).
  4. S. A. McKee and R. W. Wisniewski, Memory wall, in Encyclopedia of Parallel Computing, edited by D. Padua (Springer US, Boston, MA, 2011) pp. 1110–1116.
  5. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153 (2014).
  6. N. Marzari, A. Ferretti, and C. Wolverton, Electronic-structure methods for materials design, Nat. Mater. 20, 736 (2021).
  7. D. Poulin and P. Wocjan, Preparing ground states of quantum many-body systems on a quantum computer, Phys. Rev. Lett. 102, 130503 (2009).
  8. A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and Quantum Computation (American Mathematical Society, USA, 2002).
  9. J. Kempe, A. Kitaev, and O. Regev, The complexity of the local Hamiltonian problem, SIAM J. Comput. 35, 1070 (2006).
  10. D. Wang, O. Higgott, and S. Brierley, Accelerated variational quantum eigensolver, Phys. Rev. Lett. 122, 140504 (2019).
  11. M.-A. Filip, D. M. Ramo, and N. Fitzpatrick, Variational phase estimation with variational fast forwarding, Quantum 8, 1278 (2024).
  12. S. Kimmel, G. H. Low, and T. J. Yoder, Robust calibration of a universal single-qubit gate set via robust phase estimation, Phys. Rev. A 92, 062315 (2015).
  13. Z. Ding and L. Lin, Even shorter quantum circuit for phase estimation on early fault-tolerant quantum computers with applications to ground-state energy estimation, PRX Quantum 4, 020331 (2023a).
  14. Z. Ding and L. Lin, Simultaneous estimation of multiple eigenvalues with short-depth quantum circuit on early fault-tolerant quantum computers, Quantum 7, 1136 (2023b).
  15. B. Şahinoğlu and R. D. Somma, Hamiltonian simulation in the low-energy subspace, npj Quantum Inf. 7 (2021).
  16. T. E. O’Brien, B. Tarasinski, and B. M. Terhal, Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments, New J. Phys. 21, 023022 (2019).
  17. K. Wan, M. Berta, and E. T. Campbell, Randomized quantum algorithm for statistical phase estimation, Phys. Rev. Lett. 129, 030503 (2022).
  18. A. Dutkiewicz, B. M. Terhal, and T. E. O’Brien, Heisenberg-limited quantum phase estimation of multiple eigenvalues with few control qubits, Quantum 6, 830 (2022).
  19. L. Lin and Y. Tong, Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers, PRX Quantum 3, 010318 (2022).
  20. W.-R. Lee, R. Scott, and V. W. Scarola, Hybrid quantum-gap-estimation algorithm using a filtered time series, Phys. Rev. A 109, 052403 (2024).
  21. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  22. H. F. Trotter, On the product of semi-groups of operators, Proc. Am. Math. Soc. 10, 545 (1959).
  23. M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems, Commun. Math. Phys. 51, 183 (1976).
  24. P. Duhamel and M. Vetterli, Fast fourier transforms: A tutorial review and a state of the art, Signal Process. 19, 259 (1990).
  25. R. LaRose and B. Coyle, Robust data encodings for quantum classifiers, Phys. Rev. A 102, 032420 (2020).
  26. K. Siudzińska, Classical capacity of generalized pauli channels, J. Phys. A Math. Theor. 53, 445301 (2020).
  27. N. M. Myers, W.-R. Lee, and V. W. Scarola, unpublished .
  28. QISKIT code for the hybrid QGE algorithm, https://github.com/ wrlee7609/hybrid_quantum_gap_estimation.
  29. J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7, 308 (1965).
  30. S. Esakkirajan, T. Veerakumar, and B. N. Subudhi, Digital Signal Processing: Illustration Using Python (Springer, 2024).
  31. B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube