Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Locating the critical point for the hadron to quark-gluon plasma phase transition from finite-size scaling of proton cumulants in heavy-ion collisions (2405.10278v1)

Published 16 May 2024 in nucl-th and nucl-ex

Abstract: We perform a finite-size scaling analysis of net-proton number cumulants in Au+Au collisions at center-of-mass energies between $\sqrt{s_{\rm{NN}}} = 2.4$ GeV and 54.4 GeV to search for evidence of a critical point in the QCD phase diagram. In our analysis, we use both susceptibility and Binder cumulants which we extract from the second and fourth moments of the net-proton number distributions. We take measurements in different rapidity bin widths, corresponding to different subvolumes of the system, as probes of different length scales. We use model simulations to verify the applicability of this approach, then apply it to data and find evidence for a critical point near the baryon chemical potential of $\mu_{B} \approx 625$ MeV and temperature of $T \approx 140$ MeV. The Binder cumulants, also analyzed in varying rapidity bin widths, provide complementary evidence for a critical point in a similar region. This is the first analysis of experimental data to locate the critical point in a range consistent with theoretical predictions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. A. M. Polyakov, Phys. Lett. B 72, 477 (1978).
  2. L. Susskind, Phys. Rev. D 20, 2610 (1979).
  3. J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).
  4. M. Asakawa and K. Yazaki, Nucl. Phys. A 504, 668 (1989).
  5. P. Braun-Munzinger and J. Stachel, Nucl. Phys. A 606, 320 (1996), arXiv:nucl-th/9606017 .
  6. K. Fukushima and C. Sasaki, Prog. Part. Nucl. Phys. 72, 99 (2013), arXiv:1301.6377 [hep-ph] .
  7. A. Sorensen et al., Prog. Part. Nucl. Phys. 134, 104080 (2024), arXiv:2301.13253 [nucl-th] .
  8. F. Karsch, Lect. Notes Phys. 583, 209 (2002), arXiv:hep-lat/0106019 .
  9. C. Ratti, Rept. Prog. Phys. 81, 084301 (2018), arXiv:1804.07810 [hep-lat] .
  10. G. Baym, Nucl. Phys. A 698, XXIII (2002), arXiv:hep-ph/0104138 .
  11. R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).
  12. F. Rennecke and V. V. Skokov, Annals Phys. 444, 169010 (2022), arXiv:2203.16651 [hep-ph] .
  13. S. Mukherjee and V. Skokov, Phys. Rev. D 103, L071501 (2021), arXiv:1909.04639 [hep-ph] .
  14. G. Basar, Phys. Rev. Lett. 127, 171603 (2021), arXiv:2105.08080 [hep-th] .
  15. M. M. Aggarwal et al. (STAR),   (2010), arXiv:1007.2613 [nucl-ex] .
  16. G. Odyniec (STAR), PoS CORFU2018, 151 (2019).
  17. K. C. Meehan (STAR), Nucl. Phys. A 956, 878 (2016).
  18. M. Abdallah et al. (STAR), Phys. Rev. C 104, 024902 (2021), arXiv:2101.12413 [nucl-ex] .
  19. M. Abdallah et al. (STAR), Phys. Rev. C 107, 024908 (2023), arXiv:2209.11940 [nucl-ex] .
  20. J. Adamczewski-Musch et al. (HADES), Phys. Rev. C 102, 024914 (2020), arXiv:2002.08701 [nucl-ex] .
  21. A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832 (1969).
  22. K. Binder, Zeitschrift für Physik B Condensed Matter 43, 119 (1981).
  23. J. V. Sengers and J. G. Shanks, Journal of Statistical Physics 137, 857 (2009).
  24. C. Nonaka and M. Asakawa, Phys. Rev. C 71, 044904 (2005), arXiv:nucl-th/0410078 .
  25. M. Stephanov and Y. Yin, Phys. Rev. D 98, 036006 (2018), arXiv:1712.10305 [nucl-th] .
  26. A. Sorensen and V. Koch, Phys. Rev. C 104, 034904 (2021), arXiv:2011.06635 [nucl-th] .
  27. Y. Hatta and M. A. Stephanov, Phys. Rev. Lett. 91, 102003 (2003), [Erratum: Phys.Rev.Lett. 91, 129901 (2003)], arXiv:hep-ph/0302002 .
  28. M. Kitazawa and M. Asakawa, Phys. Rev. C 85, 021901 (2012), arXiv:1107.2755 [nucl-th] .
  29.   (2023), arXiv:2311.11020 [nucl-ex] .
  30. A. Sorensen,  in preparation.
  31. P. Sorensen, “Elliptic Flow: A Study of Space-Momentum Correlations In Relativistic Nuclear Collisions,” in Quark-gluon plasma 4, edited by R. C. Hwa and X.-N. Wang (2010) pp. 323–374, arXiv:0905.0174 [nucl-ex] .
  32. L. Adamczyk et al. (STAR), Phys. Rev. Lett. 116, 112302 (2016), arXiv:1601.01999 [nucl-ex] .
  33. G. Basar,   (2023), arXiv:2312.06952 [hep-th] .
  34. A. Bazavov et al. (HotQCD), Phys. Lett. B 795, 15 (2019), arXiv:1812.08235 [hep-lat] .
  35. J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995).
  36. J. B. Elliott et al. (ISiS), Phys. Rev. Lett. 88, 042701 (2002), arXiv:nucl-ex/0104013 .
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 20 likes.

Upgrade to Pro to view all of the tweets about this paper: