Papers
Topics
Authors
Recent
2000 character limit reached

Experimental Validation of Collision-Radiation Dataset for Molecular Hydrogen in Plasmas (2405.10227v1)

Published 16 May 2024 in physics.plasm-ph and physics.chem-ph

Abstract: Quantitative spectroscopy of molecular hydrogen has generated substantial demand, leading to the accumulation of diverse elementary-process data encompassing radiative transitions, electron-impact transitions, predissociations, and quenching. However, their rates currently available are still sparse and there are inconsistencies among those proposed by different authors. In this study, we demonstrate an experimental validation of such molecular dataset by composing a collisional-radiative model (CRM) for molecular hydrogen and comparing experimentally-obtained vibronic populations across multiple levels. From the population kinetics of molecular hydrogen, the importance of each elementary process in various parameter space is studied. In low-density plasmas (electron density $n_\mathrm{e} \lesssim 10{17}\;\mathrm{m{-3}}$) the excitation rates from the ground states and radiative decay rates, both of which have been reported previously, determines the excited state population. The inconsistency in the excitation rates affects the population distribution the most significantly in this parameter space. On the other hand, in higher density plasmas ($n_\mathrm{e} \gtrsim 10{18}\;\mathrm{m{-3}}$), the excitation rates \textit{from} excited states become important, which have never been reported in the literature, and may need to be approximated in some way. In order to validate these molecular datasets and approximated rates, we carried out experimental observations for two different hydrogen plasmas; a low-density radio-frequency (RF) heated plasma ($n_\mathrm{e}\approx 10{16}\;\mathrm{m{-3}}$) and the Large Helical Device (LHD) divertor plasma ($n_\mathrm{e}\gtrsim 10{18}\;\mathrm{m{-3}}$)... [continued]

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, 2005).
  2. P. C. Stangeby and Others, The plasma boundary of magnetic fusion devices, Vol. 224 (Institute of Physics Pub. Philadelphia, Pennsylvania, 2000).
  3. H. P. Summers, “The adas user manual, version 2.6,” http://www.adas.ac.uk.
  4. K. Sawada and T. Fujimoto, Journal of applied physics 78, 2913 (1995).
  5. P. T. Greenland, Contributions to Plasma Physics 42, 608 (2002).
  6. K. Sawada and M. Goto, Atoms for Peace, an International Journal 4, 29 (2016).
  7. “Yacora on the Web,” https://yacora.de/, [Accessed: 3-Oct-2023].
  8. “”mccc database”,” https://mccc-db.org.
  9. H. Nakashima and H. Nakatsuji, The Journal of chemical physics 149, 244116 (2018).
  10. L. Wolniewicz, The Journal of chemical physics 99, 1851 (1993).
  11. U. Fantz and D. Wünderlich, Atomic Data and Nuclear Data Tables 92, 853 (2006).
  12. R. Mewe,  .
  13. G. Comtet and D. P. De Bruijn, Chemical physics 94, 365 (1985).
  14. S. A. Astashkevich and B. P. Lavrov, Journal of Physical and Chemical Reference Data 44, 023105 (2015).
  15. A. B. Wedding and A. V. Phelps, The Journal of chemical physics 89, 2965 (1988).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.