2000 character limit reached
100% of odd hyperelliptic Jacobians have no rational points of small height (2405.10224v1)
Published 16 May 2024 in math.NT
Abstract: We study the universal family of odd hyperelliptic curves of genus $g \geq 1$ over $\mathbb{Q}$. We relate the heights of $\mathbb{Q}$-points of Jacobians of curves in this family to the reduction theory of the representation of $\mathrm{SO}_{2g+1}$ on self-adjoint $(2g + 1) \times(2g + 1)$-matrices. Using this theory, we show that in a density 1 subset, the Jacobians of these curves have no nontrivial rational points of small height.
- Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1998. Translated from the 1987 French original, Revised by the authors.
- The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point. In Automorphic representations and L𝐿Litalic_L-functions, volume 22 of Tata Inst. Fundam. Res. Stud. Math., pages 23–91. Tata Inst. Fund. Res., Mumbai, 2013.
- Manjul Bhargava. The geometric sieve and the density of squarefree values of invariant polynomials. arXiv preprint, 1402.0031v1, 2014.
- Complex abelian varieties, volume 302 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2004.
- Armand Borel. Introduction aux groupes arithmétiques. Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341. Hermann, Paris, 1969.
- Thomas Borek. Successive minima and slopes of Hermitian vector bundles over number fields. J. Number Theory, 113(2):380–388, 2005.
- Squarefree values of polynomial discriminants I. Invent. Math., 228(3):1037–1073, 2022.
- Counting lattice points and O-minimal structures. Int. Math. Res. Not. IMRN, (18):4932–4957, 2014.
- Prolegomena to a middlebrow arithmetic of curves of genus 2222, volume 230 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1996.
- H. Davenport. On a principle of Lipschitz. J. London Math. Soc., 26:179–183, 1951.
- L’ensemble exceptionnel dans la conjecture de Szpiro. Bull. Soc. Math. France, 120(4):485–506, 1992.
- Ziyang Gao. Recent developments of the uniform Mordell-Lang conjecture. arXiv preprint 2104.03431v5, 2021.
- Daniel R. Grayson. Reduction theory using semistability. Comment. Math. Helv., 59(4):600–634, 1984.
- David Holmes. An Arakelov-theoretic approach to naïve heights on hyperelliptic Jacobians. New York J. Math., 20:927–957, 2014.
- M. Hindry and J. H. Silverman. The canonical height and integral points on elliptic curves. Invent. Math., 93(2):419–450, 1988.
- Su-Ion Ih. Height uniformity for algebraic points on curves. Compositio Math., 134(1):35–57, 2002.
- Jef Laga. Arithmetic statistics of Prym surfaces. Math. Ann., 386(1-2):247–327, 2023.
- Serge Lang. Elliptic curves: Diophantine analysis, volume 231 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin-New York, 1978.
- Pierre Le Boudec. A statistical view on the conjecture of Lang about the canonical height on elliptic curves. Trans. Amer. Math. Soc., 372(12):8347–8361, 2019.
- David Mumford. Tata lectures on theta. II. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2007. Jacobian theta functions and differential equations, With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura, Reprint of the 1984 original.
- Random maximal isotropic subspaces and Selmer groups. J. Amer. Math. Soc., 25(1):245–269, 2012.
- Most odd degree hyperelliptic curves have only one rational point. Ann. of Math. (2), 180(3):1137–1166, 2014.
- J.-P. Serre. A course in arithmetic. Graduate Texts in Mathematics, No. 7. Springer-Verlag, New York-Heidelberg, 1973. Translated from the French.
- Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg.
- Joseph H. Silverman. Lower bounds for height functions. Duke Math. J., 51(2):395–403, 1984.
- Joseph H. Silverman. The difference between the Weil height and the canonical height on elliptic curves. Math. Comp., 55(192):723–743, 1990.
- Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.
- Ulrich Stuhler. Eine Bemerkung zur Reduktionstheorie quadratischer Formen. Arch. Math. (Basel), 27(6):604–610, 1976.
- Jack A. Thorne. A remark on the arithmetic invariant theory of hyperelliptic curves. Math. Res. Lett., 21(6):1451–1464, 2014.
- Jack A. Thorne. Reduction theory for stably graded Lie algebras, 2023. Preprint.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.