Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Comprehensive Causal Machine Learning (2405.10198v2)

Published 16 May 2024 in econ.EM

Abstract: Uncovering causal effects in multiple treatment setting at various levels of granularity provides substantial value to decision makers. Comprehensive machine learning approaches to causal effect estimation allow to use a single causal machine learning approach for estimation and inference of causal mean effects for all levels of granularity. Focusing on selection-on-observables, this paper compares three such approaches, the modified causal forest (mcf), the generalized random forest (grf), and double machine learning (dml). It also compares the theoretical properties of the approaches and provides proven theoretical guarantees for the mcf. The findings indicate that dml-based methods excel for average treatment effects at the population level (ATE) and group level (GATE) with few groups, when selection into treatment is not too strong. However, for finer causal heterogeneity, explicitly outcome-centred forest-based approaches are superior. The mcf has three additional benefits: (i) It is the most robust estimator in cases when dml-based approaches underperform because of substantial selection into treatment; (ii) it is the best estimator for GATEs when the number of groups gets larger; and (iii), it is the only estimator that is internally consistent, in the sense that low-dimensional causal ATEs and GATEs are obtained as aggregates of finer-grained causal parameters.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 23 likes.

Upgrade to Pro to view all of the tweets about this paper:

HackerNews

  1. Comprehensive Causal Machine Learning (2 points, 0 comments)