Constraining the nonstandard propagating gravitational waves in the cosmological background with GWTC-3 (2405.10031v2)
Abstract: The detection of gravitational waves (GWs) has opened a new window to test the fundamental nature of gravity. We present constraints on the nonstandard propagation of GWs using the spectral siren method applied to binary black hole (BBH) mergers from the third Gravitational-Wave Transient Catalog (GWTC-3). The spectral siren method exploits the redshift distribution of BBHs to probe the cosmic expansion history and break degeneracies between cosmology and modified gravity effects. We focus on the friction term $\nu$ in the nonstandard GW propagation equation, which characterizes the running of the Planck mass. Assuming the standard $\Lambda$CDM cosmology, we find $\nu = 0.5{+3.5}_{-2.6}$ (median and $90\%$ credible interval), improving upon previous constraints from the bright siren event GW170817 by an order of magnitude. This improvement is due to the higher redshifts of BBHs in GWTC-3, reaching up to $z \sim 1$. Our result suggests that the propagation of GWs is consistent with the predictions of general relativity, placing limits on modified gravity theories that predict a time-varying Planck mass. As the sensitivity of GW detectors improves, the spectral siren method will provide a powerful tool for testing gravity on cosmological scales and probing the physics of the early Universe.
- Adam G. Riess et al. (Supernova Search Team), “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009–1038 (1998), arXiv:astro-ph/9805201 .
- S. Perlmutter et al. (Supernova Cosmology Project), “Measurements of ΩΩ\Omegaroman_Ω and ΛΛ\Lambdaroman_Λ from 42 High Redshift Supernovae,” Astrophys. J. 517, 565–586 (1999), arXiv:astro-ph/9812133 .
- Gianfranco Bertone, Dan Hooper, and Joseph Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rept. 405, 279–390 (2005), arXiv:hep-ph/0404175 .
- Douglas Clowe, Marusa Bradac, Anthony H. Gonzalez, Maxim Markevitch, Scott W. Randall, Christine Jones, and Dennis Zaritsky, “A direct empirical proof of the existence of dark matter,” Astrophys. J. Lett. 648, L109–L113 (2006), arXiv:astro-ph/0608407 .
- Timothy Clifton, Pedro G. Ferreira, Antonio Padilla, and Constantinos Skordis, “Modified Gravity and Cosmology,” Phys. Rept. 513, 1–189 (2012), arXiv:1106.2476 [astro-ph.CO] .
- Austin Joyce, Bhuvnesh Jain, Justin Khoury, and Mark Trodden, “Beyond the Cosmological Standard Model,” Phys. Rept. 568, 1–98 (2015), arXiv:1407.0059 [astro-ph.CO] .
- Kazuya Koyama, “Cosmological Tests of Modified Gravity,” Rept. Prog. Phys. 79, 046902 (2016), arXiv:1504.04623 [astro-ph.CO] .
- Ippocratis D. Saltas, Ignacy Sawicki, Luca Amendola, and Martin Kunz, “Anisotropic Stress as a Signature of Nonstandard Propagation of Gravitational Waves,” Phys. Rev. Lett. 113, 191101 (2014), arXiv:1406.7139 [astro-ph.CO] .
- Atsushi Nishizawa, “Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation,” Phys. Rev. D 97, 104037 (2018), arXiv:1710.04825 [gr-qc] .
- Shun Arai and Atsushi Nishizawa, “Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory,” Phys. Rev. D 97, 104038 (2018), arXiv:1711.03776 [gr-qc] .
- Justin Khoury and Amanda Weltman, “Chameleon fields: Awaiting surprises for tests of gravity in space,” Phys. Rev. Lett. 93, 171104 (2004a), arXiv:astro-ph/0309300 .
- Justin Khoury and Amanda Weltman, “Chameleon cosmology,” Phys. Rev. D 69, 044026 (2004b), arXiv:astro-ph/0309411 .
- A. I. Vainshtein, “To the problem of nonvanishing gravitation mass,” Phys. Lett. B 39, 393–394 (1972).
- Eugeny Babichev and Cédric Deffayet, “An introduction to the Vainshtein mechanism,” Class. Quant. Grav. 30, 184001 (2013), arXiv:1304.7240 [gr-qc] .
- Kurt Hinterbichler and Justin Khoury, “Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration,” Phys. Rev. Lett. 104, 231301 (2010), arXiv:1001.4525 [hep-th] .
- Kurt Hinterbichler, Justin Khoury, Aaron Levy, and Andrew Matas, “Symmetron Cosmology,” Phys. Rev. D 84, 103521 (2011), arXiv:1107.2112 [astro-ph.CO] .
- Clifford M. Will, “The Confrontation between General Relativity and Experiment,” Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377 [gr-qc] .
- Clare Burrage and Jeremy Sakstein, “Tests of Chameleon Gravity,” Living Rev. Rel. 21, 1 (2018), arXiv:1709.09071 [astro-ph.CO] .
- Enis Belgacem, Yves Dirian, Stefano Foffa, and Michele Maggiore, “Gravitational-wave luminosity distance in modified gravity theories,” Phys. Rev. D 97, 104066 (2018a), arXiv:1712.08108 [astro-ph.CO] .
- Enis Belgacem, Yves Dirian, Stefano Foffa, and Michele Maggiore, “Modified gravitational-wave propagation and standard sirens,” Phys. Rev. D 98, 023510 (2018b), arXiv:1805.08731 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119, 161101 (2017a), arXiv:1710.05832 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs,” Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run,” Phys. Rev. X 11, 021053 (2021a), arXiv:2010.14527 [gr-qc] .
- R. Abbott et al. (KAGRA, VIRGO, LIGO Scientific), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run,” Phys. Rev. X 13, 041039 (2023a), arXiv:2111.03606 [gr-qc] .
- Bernard F. Schutz, “Determining the Hubble Constant from Gravitational Wave Observations,” Nature 323, 310–311 (1986).
- Daniel E. Holz and Scott A. Hughes, “Using gravitational-wave standard sirens,” Astrophys. J. 629, 15–22 (2005), arXiv:astro-ph/0504616 .
- Neal Dalal, Daniel E. Holz, Scott A. Hughes, and Bhuvnesh Jain, “Short grb and binary black hole standard sirens as a probe of dark energy,” Phys. Rev. D 74, 063006 (2006), arXiv:astro-ph/0601275 .
- Samaya Nissanke, Daniel E. Holz, Scott A. Hughes, Neal Dalal, and Jonathan L. Sievers, “Exploring short gamma-ray bursts as gravitational-wave standard sirens,” Astrophys. J. 725, 496–514 (2010), arXiv:0904.1017 [astro-ph.CO] .
- B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT), “Multi-messenger Observations of a Binary Neutron Star Merger,” Astrophys. J. Lett. 848, L12 (2017b), arXiv:1710.05833 [astro-ph.HE] .
- Jose María Ezquiaga and Daniel E. Holz, “Spectral Sirens: Cosmology from the Full Mass Distribution of Compact Binaries,” Phys. Rev. Lett. 129, 061102 (2022), arXiv:2202.08240 [astro-ph.CO] .
- R. Abbott et al. (LIGO Scientific, Virgo, KAGRA), “Constraints on the Cosmic Expansion History from GWTC–3,” Astrophys. J. 949, 76 (2023b), arXiv:2111.03604 [astro-ph.CO] .
- Jose María Ezquiaga and Miguel Zumalacárregui, “Dark Energy After GW170817: Dead Ends and the Road Ahead,” Phys. Rev. Lett. 119, 251304 (2017), arXiv:1710.05901 [astro-ph.CO] .
- Macarena Lagos, Maya Fishbach, Philippe Landry, and Daniel E. Holz, “Standard sirens with a running Planck mass,” Phys. Rev. D 99, 083504 (2019), arXiv:1901.03321 [astro-ph.CO] .
- R. Abbott et al. (KAGRA, VIRGO, LIGO Scientific), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run,” Phys. Rev. X 13, 041039 (2023c), arXiv:2111.03606 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL), “Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A,” Astrophys. J. Lett. 848, L13 (2017c), arXiv:1710.05834 [astro-ph.HE] .
- Claudia de Rham, J. Tate Deskins, Andrew J. Tolley, and Shuang-Yong Zhou, “Graviton Mass Bounds,” Rev. Mod. Phys. 89, 025004 (2017), arXiv:1606.08462 [astro-ph.CO] .
- Michele Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments (Oxford University Press, 2007).
- Enis Belgacem et al. (LISA Cosmology Working Group), “Testing modified gravity at cosmological distances with LISA standard sirens,” JCAP 07, 024 (2019), arXiv:1906.01593 [astro-ph.CO] .
- Suvodip Mukherjee, Benjamin D. Wandelt, and Joseph Silk, “Testing the general theory of relativity using gravitational wave propagation from dark standard sirens,” Mon. Not. Roy. Astron. Soc. 502, 1136–1144 (2021a), arXiv:2012.15316 [astro-ph.CO] .
- S. Mastrogiovanni, L. Haegel, C. Karathanasis, I. Magaña Hernandez, and D. A. Steer, “Gravitational wave friction in light of GW170817 and GW190521,” JCAP 02, 043 (2021), arXiv:2010.04047 [gr-qc] .
- Zu-Cheng Chen, Shen-Shi Du, Qing-Guo Huang, and Zhi-Qiang You, “Constraints on primordial-black-hole population and cosmic expansion history from GWTC-3,” JCAP 03, 024 (2023), arXiv:2205.11278 [astro-ph.CO] .
- Jonathan E. Thompson, Edward Fauchon-Jones, Sebastian Khan, Elisa Nitoglia, Francesco Pannarale, Tim Dietrich, and Mark Hannam, “Modeling the gravitational wave signature of neutron star black hole coalescences,” Phys. Rev. D 101, 124059 (2020), arXiv:2002.08383 [gr-qc] .
- Geraint Pratten et al., “Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes,” Phys. Rev. D 103, 104056 (2021), arXiv:2004.06503 [gr-qc] .
- Serguei Ossokine et al., “Multipolar Effective-One-Body Waveforms for Precessing Binary Black Holes: Construction and Validation,” Phys. Rev. D 102, 044055 (2020), arXiv:2004.09442 [gr-qc] .
- Andrew Matas et al., “Aligned-spin neutron-star–black-hole waveform model based on the effective-one-body approach and numerical-relativity simulations,” Phys. Rev. D 102, 043023 (2020), arXiv:2004.10001 [gr-qc] .
- Stephen R. Taylor, Jonathan R. Gair, and Ilya Mandel, “Hubble without the Hubble: Cosmology using advanced gravitational-wave detectors alone,” Phys. Rev. D 85, 023535 (2012), arXiv:1108.5161 [gr-qc] .
- Stephen R. Taylor and Jonathan R. Gair, “Cosmology with the lights off: standard sirens in the Einstein Telescope era,” Phys. Rev. D 86, 023502 (2012), arXiv:1204.6739 [astro-ph.CO] .
- Thomas J. Loredo, “Accounting for source uncertainties in analyses of astronomical survey data,” AIP Conf. Proc. 735, 195–206 (2004), arXiv:astro-ph/0409387 .
- Eric Thrane and Colm Talbot, “An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models,” Publ. Astron. Soc. Austral. 36, e010 (2019), [Erratum: Publ.Astron.Soc.Austral. 37, e036 (2020)], arXiv:1809.02293 [astro-ph.IM] .
- Ilya Mandel, Will M. Farr, and Jonathan R. Gair, “Extracting distribution parameters from multiple uncertain observations with selection biases,” Mon. Not. Roy. Astron. Soc. 486, 1086–1093 (2019), arXiv:1809.02063 [physics.data-an] .
- Simone Mastrogiovanni, Grégoire Pierra, Stéphane Perriès, Danny Laghi, Giada Caneva Santoro, Archisman Ghosh, Rachel Gray, Christos Karathanasis, and Konstantin Leyde, “ICAROGW: A python package for inference of astrophysical population properties of noisy, heterogeneous, and incomplete observations,” Astron. Astrophys. 682, A167 (2024), arXiv:2305.17973 [astro-ph.CO] .
- R. O’Shaughnessy, V. Kalogera, and K. Belczynski, “Binary Compact Object Coalescence Rates: The Role of Elliptical Galaxies,” Astrophys. J. 716, 615–633 (2010), arXiv:0908.3635 [astro-ph.CO] .
- R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run — O3 search sensitivity estimates,” (2021b), https://doi.org/10.5281/zenodo.5546676.
- R. Abbott et al. (KAGRA, VIRGO, LIGO Scientific), “Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3,” Phys. Rev. X 13, 011048 (2023d), arXiv:2111.03634 [astro-ph.HE] .
- Maya Fishbach, Daniel E. Holz, and Will M. Farr, “Does the Black Hole Merger Rate Evolve with Redshift?” Astrophys. J. Lett. 863, L41 (2018), arXiv:1805.10270 [astro-ph.HE] .
- Thomas Callister, Maya Fishbach, Daniel Holz, and Will Farr, “Shouts and Murmurs: Combining Individual Gravitational-Wave Sources with the Stochastic Background to Measure the History of Binary Black Hole Mergers,” Astrophys. J. Lett. 896, L32 (2020), arXiv:2003.12152 [astro-ph.HE] .
- Piero Madau and Mark Dickinson, “Cosmic Star Formation History,” Ann. Rev. Astron. Astrophys. 52, 415–486 (2014), arXiv:1403.0007 [astro-ph.CO] .
- Joshua S. Speagle, “dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences,” Mon. Not. Roy. Astron. Soc. 493, 3132–3158 (2020), arXiv:1904.02180 [astro-ph.IM] .
- Gregory Ashton et al., “BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy,” Astrophys. J. Suppl. 241, 27 (2019), arXiv:1811.02042 [astro-ph.IM] .
- I. M. Romero-Shaw et al., “Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue,” Mon. Not. Roy. Astron. Soc. 499, 3295–3319 (2020), arXiv:2006.00714 [astro-ph.IM] .
- Emilio Bellini and Ignacy Sawicki, “Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity,” JCAP 07, 050 (2014), arXiv:1404.3713 [astro-ph.CO] .
- Jérôme Gleyzes, David Langlois, Federico Piazza, and Filippo Vernizzi, “Exploring gravitational theories beyond Horndeski,” JCAP 02, 018 (2015), arXiv:1408.1952 [astro-ph.CO] .
- Ryotaro Kase and Shinji Tsujikawa, “Dark energy in Horndeski theories after GW170817: A review,” Int. J. Mod. Phys. D 28, 1942005 (2019), arXiv:1809.08735 [gr-qc] .
- Latham A. Boyle and Alessandra Buonanno, “Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: Implications for the early Universe,” Phys. Rev. D 78, 043531 (2008), arXiv:0708.2279 [astro-ph] .
- Rafael C. Nunes, Marcio E. S. Alves, and Jose C. N. de Araujo, “Primordial gravitational waves in Horndeski gravity,” Phys. Rev. D 99, 084022 (2019), arXiv:1811.12760 [gr-qc] .
- Nicola Bartolo et al., “Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves,” JCAP 12, 026 (2016), arXiv:1610.06481 [astro-ph.CO] .
- Chiara Caprini and Daniel G. Figueroa, “Cosmological Backgrounds of Gravitational Waves,” Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO] .
- Robert R. Caldwell, Tristan L. Smith, and Devin G. E. Walker, “Using a Primordial Gravitational Wave Background to Illuminate New Physics,” Phys. Rev. D 100, 043513 (2019), arXiv:1812.07577 [astro-ph.CO] .
- Suvodip Mukherjee, Archisman Ghosh, Matthew J. Graham, Christos Karathanasis, Mansi M. Kasliwal, Ignacio Magaña Hernandez, Samaya M. Nissanke, Alessandra Silvestri, and Benjamin D. Wandelt, “First measurement of the Hubble parameter from bright binary black hole GW190521,” (2020), arXiv:2009.14199 [astro-ph.CO] .
- Suvodip Mukherjee, Benjamin D. Wandelt, Samaya M. Nissanke, and Alessandra Silvestri, “Accurate precision Cosmology with redshift unknown gravitational wave sources,” Phys. Rev. D 103, 043520 (2021b), arXiv:2007.02943 [astro-ph.CO] .
- Will M. Farr, Maya Fishbach, Jiani Ye, and Daniel Holz, “A Future Percent-Level Measurement of the Hubble Expansion at Redshift 0.8 With Advanced LIGO,” Astrophys. J. Lett. 883, L42 (2019), arXiv:1908.09084 [astro-ph.CO] .
- Zhi-Qiang You, Xing-Jiang Zhu, Gregory Ashton, Eric Thrane, and Zong-Hong Zhu, “Standard-siren cosmology using gravitational waves from binary black holes,” Astrophys. J. 908, 215 (2021), arXiv:2004.00036 [astro-ph.CO] .
- Ling Sun et al., “Characterization of systematic error in Advanced LIGO calibration,” Class. Quant. Grav. 37, 225008 (2020), arXiv:2005.02531 [astro-ph.IM] .
- Salvatore Vitale, Carl-Johan Haster, Ling Sun, Ben Farr, Evan Goetz, Jeff Kissel, and Craig Cahillane, “Physical approach to the marginalization of LIGO calibration uncertainties,” Phys. Rev. D 103, 063016 (2021), arXiv:2009.10192 [gr-qc] .
- Michael Pürrer and Carl-Johan Haster, “Gravitational waveform accuracy requirements for future ground-based detectors,” Phys. Rev. Res. 2, 023151 (2020), arXiv:1912.10055 [gr-qc] .
- Maximiliano Isi, Katerina Chatziioannou, and Will M. Farr, “Hierarchical test of general relativity with gravitational waves,” Phys. Rev. Lett. 123, 121101 (2019), arXiv:1904.08011 [gr-qc] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.