Papers
Topics
Authors
Recent
2000 character limit reached

Semantic Communication via Rate Distortion Perception Bottleneck (2405.09995v1)

Published 16 May 2024 in eess.SP

Abstract: With the advancement of AI technology, next-generation wireless communication network is facing unprecedented challenge. Semantic communication has become a novel solution to address such challenges, with enhancing the efficiency of bandwidth utilization by transmitting meaningful information and filtering out superfluous data. Unfortunately, recent studies have shown that classical Shannon information theory primarily focuses on the bit-level distortion, which cannot adequately address the perceptual quality issues of data reconstruction at the receiver end. In this work, we consider the impact of semantic-level distortion on semantic communication. We develop an image inference network based on the Information Bottleneck (IB) framework and concurrently establish an image reconstruction network. This network is designed to achieve joint optimization of perception and bit-level distortion, as well as image inference, associated with compressing information. To maintain consistency with the principles of IB for handling high-dimensional data, we employ variational approximation methods to simplify the optimization problem. Finally, we confirm the existence of the rate distortion perception tradeoff within IB framework through experimental analysis conducted on the MNIST dataset.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563–575, 2017.
  2. N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE Transactions on Signal Processing, vol. 67, no. 10, pp. 2554–2564, 2019.
  3. K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The roadmap to 6g: Ai empowered wireless networks,” IEEE Communications Magazine, vol. 57, no. 8, pp. 84–90, 2019.
  4. M. Inkarbekov, R. Monahan, and B. A. Pearlmutter, “Visualization of ai systems in virtual reality: A comprehensive review,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 8, 2023. [Online]. Available: http://dx.doi.org/10.14569/IJACSA.2023.0140805
  5. C. Y. Chandan K. Sahu and R. Rai, “Artificial intelligence (ai) in augmented reality (ar)-assisted manufacturing applications: a review,” International Journal of Production Research, vol. 59, no. 16, pp. 4903–4959, 2021. [Online]. Available: https://doi.org/10.1080/00207543.2020.1859636
  6. S. Atakishiyev, M. Salameh, H. Yao, and R. Goebel, “Explainable artificial intelligence for autonomous driving: A comprehensive overview and field guide for future research directions,” 2023.
  7. S. Kaur, J. Singla, L. Nkenyereye, S. Jha, D. Prashar, G. P. Joshi, S. El-Sappagh, M. S. Islam, and S. M. R. Islam, “Medical diagnostic systems using artificial intelligence (ai) algorithms: Principles and perspectives,” IEEE Access, vol. 8, pp. 228 049–228 069, 2020.
  8. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
  9. J. Hoydis, F. A. Aoudia, A. Valcarce, and H. Viswanathan, “Toward a 6g ai-native air interface,” IEEE Communications Magazine, vol. 59, no. 5, pp. 76–81, 2021.
  10. W. Tong and G. Y. Li, “Nine challenges in artificial intelligence and wireless communications for 6g,” IEEE Wireless Communications, vol. 29, no. 4, pp. 140–145, 2022.
  11. M. Chen, M. Liu, W. Wang, H. Dou, and L. Wang, “Cross-modal semantic communications in 6g,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC), 2023, pp. 1–6.
  12. S. R. Pokhrel and J. Choi, “Understand-before-talk (ubt): A semantic communication approach to 6g networks,” IEEE Transactions on Vehicular Technology, vol. 72, no. 3, pp. 3544–3556, 2023.
  13. W. Weaver, “Recent contributions to the mathematical theory of communication,” ETC: a review of general semantics, pp. 261–281, 1949.
  14. B. Guler, A. Yener, and A. Swami, “The semantic communication game,” 2016 IEEE International Conference on Communications (ICC), pp. 1–6, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:8091579
  15. A. Chattopadhyay, B. D. Haeffele, D. Geman, and R. Vidal, “Quantifying task complexity through generalized information measures,” 2021. [Online]. Available: https://openreview.net/forum?id=vcKVhY7AZqK
  16. N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-channel coding of text,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 2326–2330.
  17. S. Xie, H. He, H. Li, S. Song, J. Zhang, Y.-J. A. Zhang, and K. B. Letaief, “Deep learning-based adaptive joint source-channel coding using hypernetworks,” arXiv preprint arXiv:2401.11155, 2024.
  18. Y. Blau and T. Michaeli, “The perception-distortion tradeoff,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.   IEEE, Jun. 2018. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2018.00652
  19. ——, “Rethinking lossy compression: The rate-distortion-perception tradeoff,” in International Conference on Machine Learning, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:59158898
  20. L. Theis and A. B. Wagner, “A coding theorem for the rate-distortion-perception function,” ArXiv, vol. abs/2104.13662, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:233423397
  21. J. Chen, L. Yu, J. Wang, W. Shi, Y. Ge, and W. Tong, “On the rate-distortion-perception function,” IEEE Journal on Selected Areas in Information Theory, vol. 3, pp. 664–673, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:248157593
  22. N. Tishby, F. Pereira, and W. Bialek, “The information bottleneck method,” Proceedings of the 37th Allerton Conference on Communication, Control and Computation, vol. 49, 07 2001.
  23. J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication for edge inference: An information bottleneck approach,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 197–211, 2021.
  24. D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review for statisticians,” Journal of the American Statistical Association, vol. 112, no. 518, p. 859–877, Apr. 2017. [Online]. Available: http://dx.doi.org/10.1080/01621459.2017.1285773
  25. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” CoRR, vol. abs/1312.6114, 2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:216078090
  26. L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008. [Online]. Available: http://jmlr.org/papers/v9/vandermaaten08a.html

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.