Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Zero-shot counting with a dual-stream neural network model (2405.09953v1)

Published 16 May 2024 in q-bio.NC

Abstract: Deep neural networks have provided a computational framework for understanding object recognition, grounded in the neurophysiology of the primate ventral stream, but fail to account for how we process relational aspects of a scene. For example, deep neural networks fail at problems that involve enumerating the number of elements in an array, a problem that in humans relies on parietal cortex. Here, we build a 'dual-stream' neural network model which, equipped with both dorsal and ventral streams, can generalise its counting ability to wholly novel items ('zero-shot' counting). In doing so, it forms spatial response fields and lognormal number codes that resemble those observed in macaque posterior parietal cortex. We use the dual-stream network to make successful predictions about behavioural studies of the human gaze during similar counting tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 58 likes.

Upgrade to Pro to view all of the tweets about this paper: