Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Symmetry breaking and non-ergodicity in a driven-dissipative ensemble of multi-level atoms in a cavity (2405.09885v1)

Published 16 May 2024 in quant-ph and physics.atom-ph

Abstract: Dissipative light-matter systems can display emergent collective behavior. Here, we report a $\mathbb{Z}_2$-symmetry-breaking phase transition in a system of multi-level ${87}$Rb atoms strongly coupled to a weakly driven two-mode optical cavity. In the symmetry-broken phase, non-ergodic dynamics manifests in the emergence of multiple stationary states with disjoint basins of attraction. This feature enables the amplification of a small atomic population imbalance into a characteristic macroscopic cavity transmission signal. Our experiment does not only showcase strongly dissipative atom-cavity systems as platforms for probing non-trivial collective many-body phenomena, but also highlights their potential for hosting technological applications in the context of sensing, density classification, and pattern retrieval dynamics within associative memories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. T. D. Farokh Mivehvar, Francesco Piazza and H. Ritsch, Cavity qed with quantum gases: new paradigms in many-body physics, Adv. Phys. 70, 1 (2021).
  2. K. M. Birnbaum, A. S. Parkins, and H. J. Kimble, Cavity qed with multiple hyperfine levels, Phys. Rev. A 74, 063802 (2006).
  3. K. J. Arnold, M. P. Baden, and M. D. Barrett, Collective cavity quantum electrodynamics with multiple atomic levels, Phys. Rev. A 84, 033843 (2011).
  4. A. P. Orioli, J. K. Thompson, and A. M. Rey, Emergent dark states from superradiant dynamics in multilevel atoms in a cavity, Phys. Rev. X 12, 011054 (2022).
  5. J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982).
  6. F. Carollo and I. Lesanovsky, Exactness of mean-field equations for open dicke models with an application to pattern retrieval dynamics, Phys. Rev. Lett. 126, 230601 (2021).
  7. M. Land and R. K. Belew, No perfect two-state cellular automata for density classification exists, Phys. Rev. Lett. 74, 5148 (1995).
  8. Supplementary material at…,  .
  9. D. Plankensteiner, C. Hotter, and H. Ritsch, Quantumcumulants.jl: A julia framework for generalized mean-field equations in open quantum systems, Quantum 6, 617 (2022).
  10. E. Fiorelli, I. Lesanovsky, and M. Müller, Phase diagram of quantum generalized Potts-Hopfield neural networks, New Journal of Physics 24, 033012 (2022).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com