Driven-dissipative phase separation in free-space atomic ensembles (2403.15237v1)
Abstract: The driven Dicke model, wherein an ensemble of atoms is driven by an external field and undergoes collective spontaneous emission due to coupling to a leaky cavity mode, is a paradigmatic example of a system exhibiting a driven-dissipative phase transition as a function of driving strength. Recently, a similar phenomenon was experimentally observed, not in a cavity setting, but rather in a free-space atomic ensemble. The reason why similar behavior should emerge in free space is not obvious, as the system interacts with a continuum of optical modes, which encodes light propagation effects. Here, we present and solve a simple model to explain the behavior of the free-space system, based on the one-dimensional Maxwell-Bloch equations. On one hand, we show that a free-space ensemble at a low optical depth can exhibit similar behavior as the cavity system, as spatial propagation effects are negligible. On the other hand, in the thermodynamic limit of large atom number, we show that certain observables such as the transmittance or the atomic excited population exhibit non-analytic behavior as a function of the driving intensity, reminiscent of a phase transition. However, a closer analysis reveals that the atomic properties are highly inhomogeneous in space, and based on this we argue that the free-space system does not undergo a phase transition but rather a ``phase separation", roughly speaking, between saturated and unsaturated regions.
- K. Hepp and E. H. Lieb, Phys. Rev. A 8, 2517 (1973).
- H. J. Carmichael and D. F. Walls, Journal of Physics B: Atomic and Molecular Physics 10, L685 (1977).
- H. J. Carmichael, Journal of Physics B: Atomic and Molecular Physics 13, 3551 (1980).
- S. Schneider and G. J. Milburn, Phys. Rev. A 65, 042107 (2002).
- A. González-Tudela and D. Porras, Phys. Rev. Lett. 110, 080502 (2013).
- P. Kirton and J. Keeling, Phys. Rev. Lett. 118, 123602 (2017).
- J. Hannukainen and J. Larson, Phys. Rev. A 98, 042113 (2018).
- O. Somech and E. Shahmoon, “Quantum entangled states of a classically radiating macroscopic spin,” (2022), arXiv:2204.05455 [quant-ph] .
- P. Drummond and H. Carmichael, Optics Communications 27, 160 (1978).
- R. Puri and S. Lawande, Physics Letters A 72, 200 (1979).
- S. L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908 (1967).
- F. Arecchi and R. Bonifacio, IEEE Journal of Quantum Electronics 1, 169 (1965).
- M. Gross and S. Haroche, Physics Reports 93, 301 (1982).
- Y. Castin and K. Mølmer, Phys. Rev. A 51, R3426 (1995).
- S. Argawal, E. Chaparro, D. Barberena, A. Piñeiro-Orioli, G. Ferioli, S. Pancaldi, I. Ferrier-Barbut, A. Browaeys, and A. M. Rey, “private communication (article in preparation),” (2024).
- S. Sarkar and J. S. Satchell, Journal of Physics A: Mathematical and General 20, 2147 (1987).
- B. A. Chase and J. M. Geremia, Phys. Rev. A 78, 052101 (2008).
- J.-T. Shen and S. Fan, Phys. Rev. A 79, 023837 (2009).
- J.-T. Shen and S. Fan, Phys. Rev. Lett. 95, 213001 (2005).
- G. Calajó and D. E. Chang, Phys. Rev. Res. 4, 023026 (2022).
- P. Meystre and M. Sargent, Elements of Quantum Optics (Springer Berlin Heidelberg, 2007).
- A. Lagendijk and B. A. van Tiggelen, Physics Reports 270, 143 (1996).
- L. Ji, Y. He, Q. Cai, Z. Fang, Y. Wang, L. Qiu, L. Zhou, S. Wu, S. Grava, and D. E. Chang, “Superradiant detection of microscopic optical dipolar interactions,” (2023), arXiv:2101.10779 [physics.atom-ph] .
- M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
- R. Corless and D. Jeffrey, Artificial Intelligence - AI , 76 (2002).
- G. Y. Kim and C. H. Kwak, Journal of Optics 22, 095502 (2020).
- R. T. Sutherland and F. Robicheaux, Phys. Rev. A 95, 033839 (2017).
- R. H. Dicke, Phys. Rev. 93, 99 (1954).
- F. Robicheaux and D. A. Suresh, Phys. Rev. A 104, 023702 (2021).