Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the conjugacy separability of ordinary and generalized Baumslag-Solitar groups (2405.09736v2)

Published 16 May 2024 in math.GR

Abstract: Let $\mathcal{C}$ be a class of groups. A group $X$ is said to be residually a $\mathcal{C}$-group (conjugacy $\mathcal{C}$-separable) if, for any elements $x,y \in X$ that are not equal (not conjugate in $X$), there exists a homomorphism $\sigma$ of $X$ onto a group from $\mathcal{C}$ such that the elements $x\sigma$ and $y\sigma$ are still not equal (respectively, not conjugate in $X\sigma$). A generalized Baumslag-Solitar group or GBS-group is the fundamental group of a finite connected graph of groups whose all vertex and edge groups are infinite cyclic. An ordinary Baumslag-Solitar group is the GBS-group that corresponds to a graph containing only one vertex and one loop. Suppose that the class $\mathcal{C}$ consists of periodic groups and is closed under taking subgroups and unrestricted wreath products. We prove that a non-solvable GBS-group is conjugacy $\mathcal{C}$-separable if and only if it is residually a $\mathcal{C}$-group. We also find a criterion for a solvable GBS-group to be conjugacy $\mathcal{C}$-separable. As a corollary, we prove that an arbitrary GBS-group is conjugacy (finite) separable if and only if it is residually finite.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. Baumslag G., Solitar D.  Some two-generator one-relator non-Hopfian groups. Bull. Amer. Math. Soc. 68 (3), 199–201 (1962). DOI: 10.1090/S0002-9904-1962-10745-9.
  2. Beeker B.  Multiple conjugacy problem in graphs of free abelian groups. Groups Geom. Dyn. 9 (1), 1–27 (2015). DOI: 10.4171/GGD/303.
  3. Chagas S. C., Zalesskii P. A.  Subgroup conjugacy separability of free-by-finite groups. Arch. Math. 104 (2), 101–109 (2015). DOI 10.1007/s00013-015-0727-8.
  4. Clay M., Forester M.  On the isomorphism problem for generalized Baumslag–Solitar groups. Algebr. Geom. Topol. 8 (4), 2289–2322 (2008). DOI: 10.2140/agt.2008.8.2289.
  5. Cornulier Y., Valette A.  On equivariant embeddings of generalized Baumslag–Solitar groups. Geom. Dedicata 175, 385–401 (2015). DOI: 10.1007/s10711-014-9953-7.
  6. Delgado A. L., Robinson D. J. S., Timm M.  Generalized Baumslag–Solitar groups and geometric homomorphisms. J. Pure Appl. Algebra 215 (4), 398–410 (2011). DOI: 10.1016/j.jpaa.2010.04.025.
  7. Delgado A. L., Robinson D. J. S., Timm M.  Generalized Baumslag–Solitar graphs with soluble fundamental groups. Algebra Colloq. 21 (1), 53–58 (2014). DOI: 10.1142/S1005386714000030.
  8. Delgado A. L., Robinson D. J. S., Timm M.  Cyclic normal subgroups of generalized Baumslag–Solitar groups. Comm. Algebra 45 (4), 1808–1818 (2017). DOI: 10.1080/00927872.2016.1226859.
  9. Delgado A. L., Robinson D. J. S., Timm M.  3333-manifolds and generalized Baumslag–Solitar groups. Comm. Anal. Geom. 26 (3), 571–584 (2018). DOI: 10.4310/CAG.2018.v26.n3.a4.
  10. Dudkin F. A.  On the embedding problem for generalized Baumslag–Solitar groups. J. Group Theory 18 (4), 655–684 (2015). DOI: 10.1515/jgth-2014-0050.
  11. Dudkin F. A.  The centralizer dimension of generalized Baumslag–Solitar groups. Algebra Logic 55 (5), 403–406 (2016). DOI: 10.1007/s10469-016-9412-7.
  12. Dudkin F. A.  The isomorphism problem for generalized Baumslag–Solitar groups with one mobile edge. Algebra Logic 56 (3), 197–209 (2017). DOI: 10.1007/s10469-017-9440-y.
  13. Dudkin F. A.  On the centralizer dimension and lattice of generalized Baumslag–Solitar groups. Sib. Math. J. 59 (3), 403–414 (2018). DOI: 10.1134/S0037446618030035.
  14. Dudkin F. A.  ℱπsubscriptℱ𝜋\mathcal{F}_{\pi}caligraphic_F start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT-residuality of generalized Baumslag–Solitar groups. Arch. Math. 114, 129–134 (2020). DOI: 10.1007/s00013-019-01404-8.
  15. Dudkin F. A.  Universal equivalence of generalized Baumslag–Solitar groups. Algebra Logic 59 (5), 357–366 (2020). DOI: 10.1007/s10469-020-09609-5.
  16. Dudkin F. A.  Finite index subgroups in non-large generalized Baumslag–Solitar groups. Comm. Algebra 49 (9), 3736–3742 (2021). DOI: 10.1080/00927872.2021.1904969.
  17. Dudkin F. A.  Group and algorithmic properties of generalized Baumslag–Solitar groups. Algebra Logic 61 (3), 230–237 (2022). DOI: 10.1007/s10469-022-09691-x.
  18. Dudkin F. A., Mamontov A. S.  On knot groups acting on trees. J. Knot Theory Ramif. 29 (9), Article ID 2050062 (2020). DOI: 10.1142/S0218216520500625.
  19. Dudkin F. A., Yan N.  Torsion in the outer automorphism groups of generalized Baumslag–Solitar groups. Sib. Math. J. 64 (1), 67–75 (2023). DOI: 10.1134/S0037446623010081.
  20. Ferov M.  On conjugacy separability of graph products of groups. J. Algebra 447, 135–182 (2016). DOI: 10.1016/j.jalgebra.2015.08.027.
  21. Forester M.  Deformation and rigidity of simplicial group actions on trees. Geom. Topol. 6, 219–267 (2002). DOI: 10.2140/gt.2002.6.219.
  22. Forester M.  On uniqueness of JSJ decompositions of finitely generated groups. Comment. Math. Helv. 78 (4), 740–751 (2003). DOI: 10.1007/s00014-003-0780-y.
  23. Forester M.  Splittings of generalized Baumslag–Solitar groups. Geom. Dedicata 121, 43–59 (2006). DOI: 10.1007/s10711-006-9085-9.
  24. Gandini G., Meinert S., Rüping H.  The Farrell–Jones conjecture for fundamental groups of graphs of abelian groups. Groups Geom. Dyn. 9 (3), 783–792 (2015). DOI: 10.4171/GGD/327.
  25. Gruenberg K. W.  Residual properties of infinite soluble groups. Proc. London Math. Soc. s3-7 (1), 29–62 (1957). DOI: 10.1112/plms/s3-7.1.29.
  26. Ivanova E. A.  On conjugacy p𝑝pitalic_p-separability of free products of two groups with amalgamation. Math. Notes 76 (4), 465–471 (2004). DOI: 10.1023/B:MATN.0000043476.39676.01.
  27. Ivanova E. A.  The conjugacy p𝑝pitalic_p-separability of free products of two groups. Bull. Ivanovo State Univ. 6 (3), 83–91 (2005) [in Russian].
  28. Kropholler P. H.  A note on centrality in 3333-manifold groups. Math. Proc. Camb. Phil. Soc. 107 (2), 261–266 (1990). DOI: 10.1017/S0305004100068523.
  29. Levitt G.  On the automorphism group of generalized Baumslag–Solitar groups. Geom. Topol. 11, 473–515 (2007). DOI: 10.2140/gt.2007.11.473.
  30. Levitt G.  Quotients and subgroups of Baumslag–Solitar groups. J. Group Theory 18 (1), 1–43 (2015). DOI: 10.1515/jgth-2014-0028.
  31. Meinert S.  The Lipschitz metric on deformation spaces of G𝐺Gitalic_G–trees. Algebr. Geom. Topol. 15 (2), 987–1029 (2015). DOI: 10.2140/agt.2015.15.987.
  32. Meskin S.  Nonresidually finite one-relator groups. Trans. Amer. Math. Soc. 164, 105–114 (1972). DOI: 10.1090/S0002-9947-1972-0285589-5.
  33. Moldavanskii D. I.  On the conjugacy p𝑝pitalic_p-separability of certain one-relator groups. Bull. Ivanovo State Univ. 8 (3) 89–94 (2007) [in Russian].
  34. Moldavanskii D. I.  On the residual properties of Baumslag–Solitar groups. Comm. Algebra 46 (9), 3766–3778 (2018). DOI: 10.1080/00927872.2018.1424867.
  35. Robinson D. J. S.  Recent results on generalized Baumslag–Solitar groups. Note Mat. 30 (1), 37–53 (2010). DOI: 10.1285/i15900932v30n1supplp37.
  36. Robinson D. J. S.  The Schur multiplier of a generalized Baumslag–Solitar group. Rend. Sem. Mat. Univ. Padova 125, 207–216 (2011). URL: www.numdam.org/item/RSMUP_2011__125__207_0/.
  37. Sokolov E. V.  A characterization of root classes of groups. Comm. Algebra 43 (2), 856–860 (2015). DOI: 10.1080/00927872.2013.851207.
  38. Sokolov E. V.  On the conjugacy separability of some free constructions of groups by root classes of finite groups. Math. Notes 97 (5), 779–790 (2015). DOI: 10.1134/S0001434615050132.
  39. Sokolov E. V.  Certain residual properties of generalized Baumslag–Solitar groups. J. Algebra 582, 1–25 (2021). DOI: 10.1016/j.jalgebra.2021.05.001.
  40. Sokolov E. V.  Certain residual properties of HNN-extensions with central associated subgroups. Comm. Algebra 50 (3), 962–987 (2022). DOI: 10.1080/00927872.2021.1976791.
  41. Sokolov E. V.  On the separability of subgroups of nilpotent groups by root classes of groups. J. Group Theory 26 (4), 751–777 (2023). DOI: 10.1515/jgth-2022-0021.
  42. Sokolov E. V.  On the separability of abelian subgroups of the fundamental groups of graphs of groups. II. Sib. Math. J. 65 (1), 174–189 (2024). DOI: 10.1134/S0037446624010166.
  43. Sokolov E. V. Tumanova E. A.  To the question of the root-class residuality of free constructions of groups. Lobachevskii J. Math. 41, 260–272 (2020). DOI: 10.1134/S1995080220020158.
  44. Tumanova E. A.  The root class residuality of Baumslag–Solitar groups. Sib. Math. J. 58 (3), 546–552 (2017). DOI: 10.1134/S003744661703017X.
  45. Tumanova E. A.  The root class residuality of the tree product of groups with amalgamated retracts. Sib. Math. J. 60 (4), 699–708 (2019). DOI: 10.1134/S0037446619040153.
  46. Tumanova E. A.  Computational analysis of quantitative characteristics of some residual properties of solvable Baumslag–Solitar groups. Aut. Control Comp. Sci. 56 (7), 800–806 (2022). DOI: 10.3103/S0146411622070203.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.