Hidden zero modes and topology of multiband non-Hermitian systems (2405.09728v3)
Abstract: In a finite one-dimensional non-Hermitian system, the number of zero modes does not necessarily reflect the topology of the system. This is known as the breakdown of the bulk-boundary correspondence and has led to misconceptions about the topological protection of edge modes in such systems. Here we show why this breakdown does occur and that it typically results in hidden zero modes, extremely long-lived zero energy excitations, which are only revealed when considering the singular value instead of the eigenvalue spectrum. We point out, furthermore, that in a finite multiband non-Hermitian system with Hamiltonian $H$, one needs to consider also the reflected Hamiltonian $\tilde H$, which is in general distinct from the adjoint $H\dagger$, to properly relate the number of protected zeroes to the winding number of $H$.
- C. M. Bender, Introduction to pt-symmetric quantum theory, Contemp. Phys. 46, 277 (2005).
- G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48, 119 (1976).
- H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002).
- M.-A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).
- A. Böttcher and B. Silbermann, Introduction to large truncated Toeplitz matrices (Springer (New York), 1999).
- Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69, 249 (2021), .
- E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93, 015005 (2021), arXiv:1912.10048 [cond-mat.mes-hall] .
- D. Bernard and A. LeClair, A classification of non-hermitian random matrices, in Statistical Field Theories (Springer Netherlands, 2002) p. 207.
- S. Yao and Z. Wang, Edge states and topological invariants of non-hermitian systems, Phys. Rev. Lett. 121, 086803 (2018).
- N. Okuma and M. Sato, Hermitian zero modes protected by nonnormality: Application of pseudospectra, Phys. Rev. B 102, 014203 (2020).
- L. Herviou, J. H. Bardarson, and N. Regnault, Defining a bulk-edge correspondence for non-hermitian hamiltonians via singular-value decomposition, Phys. Rev. A 99, 052118 (2019).
- T. L. Hughes, E. Prodan, and B. A. Bernevig, Inversion-symmetric topological insulators, Phys. Rev. B 83, 245132 (2011).
- C. Fang, M. J. Gilbert, and B. A. Bernevig, Entanglement spectrum classification of Cnsubscript𝐶𝑛{C}_{n}italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-invariant noninteracting topological insulators in two dimensions, Phys. Rev. B 87, 035119 (2013).
- K. Monkman and J. Sirker, Symmetry-resolved entanglement of C2subscript𝐶2{C}_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-symmetric topological insulators, Phys. Rev. B 107, 125108 (2023a).
- H. Jiang, C. Yang, and S. Chen, Topological invariants and phase diagrams for one-dimensional two-band non-Hermitian systems without chiral symmetry, Phys. Rev. A 98, 052116 (2018), .
- K. Monkman and J. Sirker, Entanglement and particle fluctuations of one-dimensional chiral topological insulators, Phys. Rev. B 108, 125116 (2023c).
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.