Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Sobolev theory for Kolmogorov-Fokker-Planck operators with coefficients measurable in time and $VMO$ in space (2405.09358v2)

Published 15 May 2024 in math.AP

Abstract: We consider Kolmogorov-Fokker-Planck operators of the form $$ \mathcal{L}u=\sum_{i,j=1}{q}a_{ij}(x,t)u_{x_{i}x_{j}}+\sum_{k,j=1}{N} b_{jk}x_{k}u_{x_{j}}-\partial_{t}u, $$ with $\left( x,t\right) \in\mathbb{R}{N+1},N\geq q\geq1$. We assume that $a_{ij}\in L{\infty}\left( \mathbb{R}{N+1}\right) $, the matrix $\left{ a_{ij}\right} $ is symmetric and uniformly positive on $\mathbb{R}{q}$, and the drift [ Y=\sum_{k,j=1}{N}b_{jk}x_{k}\partial_{x_{j}}-\partial_{t} ] has a structure which makes the model operator with constant $a_{ij}$ hypoelliptic, translation invariant w.r.t. a suitable Lie group operation, and $2$-homogeneus w.r.t. a suitable family of dilations. We also assume that the coefficients $a_{ij}$ are $VMO$ w.r.t. the space variable, and only bounded measurable in $t$. We prove, for every $p\in\left( 1,\infty\right) $, global Sobolev estimates of the kind: \begin{align*} \Vert u\Vert {W{X}{2,p}(S_{T})} \equiv & \sum_{i,j=1}{q}\Vert u_{x_{i}x_{j}}\Vert_{L{p}(S_{T})} +\Vert Yu\Vert {L{p}(S{T})} +\sum_{i=1}{q}\Vert u_{x_{i}}\Vert {L{p}(S{T})} +\Vert u\Vert {L{p}(S{T})} \ & \leq c\big{ \Vert \mathcal{L}u\Vert {L{p}(S{T})}+\Vert u\Vert_{L{p}(S_{T})}\big} \end{align*} with $S_{T}=\mathbb{R}{N}\times\left( -\infty,T\right) $ for any $T\in(-\infty,+\infty]$. Also, the well-posedness in $W_{X}{2,p}(\Omega_{T})$, with $\Omega_{T}=\mathbb{R}{N}\times(0,T) $ and $T\in\mathbb{R}$, of the Cauchy problem% $$ \begin{cases} \mathcal{L}u=f & \text{in $\Omega_{T}$} \ u(\cdot,0) =g & \text{in $\mathbb{R}{N}$} \end{cases} $$ is proved, for $f\in L{p}(\Omega_{T}), g\in W_{X}{2,p}(\mathbb{R}{N})$.

Summary

We haven't generated a summary for this paper yet.