Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global $L^{p}$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients (1209.0387v1)

Published 3 Sep 2012 in math.AP

Abstract: We consider a class of degenerate Ornstein-Uhlenbeck operators in $\mathbb{R}{N}$, of the kind [\mathcal{A}\equiv\sum_{i,j=1}{p_{0}}a_{ij}(x) \partial_{x_{i}x_{j}}{2}+\sum_{i,j=1}{N}b_{ij}x_{i}\partial_{x_{j}}%] where $(a_{ij})$ is symmetric uniformly positive definite on $\mathbb{R}{p_{0}}$ ($p_{0}\leq N$), with uniformly continuous and bounded entries, and $(b_{ij})$ is a constant matrix such that the frozen operator $\mathcal{A}{x{0}}$ corresponding to $a_{ij}(x_{0})$ is hypoelliptic. For this class of operators we prove global $L{p}$ estimates ($1<p<\infty$) of the kind:% [|\partial_{x_{i}x_{j}}{2}u|_{L{p}(\mathbb{R}% {N})}\leq c{|\mathcal{A}u|{L{p}(\mathbb{R}{N})}+|u|{L{p}(\mathbb{R}% {N})}} for i,j=1,2,...,p_{0}.] We obtain the previous estimates as a byproduct of the following one, which is of interest in its own:% [|\partial_{x_{i}x_{j}}{2}u|{L{p}(S{T})}\leq c{|Lu|{L{p}(S{T})}+|u|{L{p}(S{T})}}] for any $u\in C_{0}{\infty}(S_{T}),$ where $S_{T}$ is the strip $\mathbb{R}{N}\times[-T,T]$, $T$ small, and $L$ is the Kolmogorov-Fokker-Planck operator% [L\equiv\sum_{i,j=1}{p_{0}}a_{ij}(x,t) \partial_{x_{i}x_{j}}% {2}+\sum_{i,j=1}{N}b_{ij}x_{i}\partial_{x_{j}}-\partial_{t}%] with uniformly continuous and bounded $a_{ij}$'s.

Summary

We haven't generated a summary for this paper yet.